Have a personal or library account? Click to login
Chelate-induced accumulation of rare earth elements in plants grown on soil and ash-based growing media Cover

Chelate-induced accumulation of rare earth elements in plants grown on soil and ash-based growing media

Open Access
|Apr 2025

References

  1. Adeel M., Lee J.Y., Zain M., Rizwan M., Nawab A., et al., 2019. Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 127: 785–800, doi: 10.1016/j.envint.2019.03.022.
  2. Ali S.I., Gopalakrishnan B., Venkatesalu V., 2017. Phytotherapy Research pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: a review. Phytotherapy Research, 31: 1140–1161, doi: 0.1002/ptr.5840.
  3. Beiyuan J., Fang L., Chen H., Li M., Liu D., Wang Y., 2021. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process. Environmental Pollution, 268: 115719, doi: 10.1016/j.envpol.2020.115719.
  4. Cakaj A., Hanc A., Lisiak-Zielińska M., Borowiak K., Drapikowska M., 2023. Trifolium pratense and the heavy metal content in various urban areas. Sustainability, 15(9): 7325, doi: 10.3390/su15097325.
  5. Cao X., Chen Y., Wang X., Deng X. 2001. Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere, 44(4): 655–661, doi: 10.1016/S0045-6535(00)00492-6.
  6. Deepika, Haritash A.K., 2023. Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical review. Horticulture, environment, and biotechnology, 64: 709–734, doi: 10.1007/s13580-023-00518-x.
  7. Dinh T., Dobo Z., Kovacs H., 2022. Phytomining of rare earth elements – A review. Chemosphere, 297: 134259, doi: 10.1016/j.chemosphere.2022.134259.
  8. Dluhosova J., Istvanek J., Nedelnik J., Repkova J., 2018. Red clover (Trifolium pratense) and Zigzag clover (T. Medium) - A Picture of genomic similarites and differences. Frontier Plants Science, 9: 724, doi: 10.3389/fpls.2018.00724.
  9. Dong Q., Liu Y., Liu G., Guo Y., Yang Q., et al., 2021. Aging and phytoavailability of newly introduced and legacy cadmium in paddy soil and their bioaccessibility in rice grain distinguished by enriched isotope tracing. Journal of Hazardous Materials, 417: 125998, doi: 10.1016/j.jhazmat.2021.125998.
  10. Grcman H., Velikonja-Bolta S., Vodnik D., Kos B., Leštan D. 2001. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil, 235: 105–114.
  11. He E., Peijnenburg W. J.G.M., Qiu H., 2022. Photosynthetic, antioxidative, and metabolic adjustments of a crop plant to elevated levels of La and Ce exposure. Ecotoxicology and Environmental Safety, 242: 113922, doi: 10.1016/j.ecoenv.2022.113922.
  12. Ibrahim E.A., 2023. Effect of citric acid on phytoextraction potential of Cucurbita pepo, Legenaria siceraria, and Raphanus sativus plants exposed to multi-metal stress. Scientific Reports, 13: 13070, doi: 10.1038/s41598-023-40233-2.
  13. Lihong Y., Xiaorong W., Hao S., Haishi Z., 1999. The effect of EDTA on rare earth elements bioavailability in soil system. Chemosphere, 38(12): 2825–2833, doi: 10.1016/S0045-6535(98)00496-2.
  14. Lima A. T., Ottosen L., 2021. Recovering rare earth elements from contaminated soils: Critical overview of current remediation technologies. Chemosphere, 265: 129163, doi: 10.1016/j.chemosphere.2020.129163.
  15. Mohrazi A., Ghasemi-Fasaei R., Mojiri A., Shirazi S.S., 2023. Investigating electro-bio-chemical phytoremediation of multi-metal polluted soil by maize and sunflower using RSM-based optimization methodology. Environmental and Experimental Botany, 211: 105352, doi: 10.1016/j.envexpbot.2023.105352.
  16. Nawaz H., Ali A., Saleem M. H., Ameer A., Hafeez A., Alharbi K., Ezzat A., Khan A., Jamil M., Farid G. 2022. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of NI contaminated soil by using canola (Brassica napus). Brasilian Journal of Biology, 82: 1–9, doi: 10.1590/1519-6984.261785.
  17. Ozaki T., Enomoto S., Minai Y., Ambe A., Ambe F., Makide Y., 2000. Beneficial effect of rare earth elements on the growth of Dryopteris erythrosora. Journal of Plant Physology, 156(3): 330–334, doi: 10.1016/S0176-1617(00)80070-X.
  18. Poursattari T., Hadi H., 2022. Lead phytoremediation, distribution, and toxicity in Rapeseed (Brassica napus L.): the role of single and combined use of plant growth regulators and chelators. Journal of Soil Science and Plant Nutrition, 22: 1700–1717, doi: 10.1007/s42729-022-00765-4.
  19. Rabbani M., Rabbani M.T., Muthoni F., Sun Y., Vahidi E., 2024. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. Bioresource technology, 401: 130751, doi: 10.1016/j.biortech.2024.130751.
  20. Ramos S.J., Dinali G.S., Oliveira C., Martins G.C., Moreira C.G., et al., 2016. Rare earth elements i the soil environment. Currently Pollution Report, 2: 28–50, doi: 10.1007/s40726-016-0026-4.
  21. Remigio A. C., Chaney R. L., Baker A. J., Edraki M., Edraki M., Erskine P. D., Echevarria G., van der Ent A. 2020. Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant and Soil, 449(9): 11–37, doi: 10.1007/s11104-020-04487-3.
  22. Saleem M.H., Ali S., Kamran M., Iqbal N., Azeem M., et al., 2020. Ethylenediaminetetraacetic Acid (EDTA) mitigates the toxic effect of excessive copper concentrations on growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper accumulation capabilities. Plants (Basel), 9(6): 756, doi: 10.3390/plants9060756.
  23. Salifu M., John M.A., Abubakar M., Bankole I.A., Ajayi N.A., Amusan O., 2024. Phytoremediation strategies for heavy metal contamination: a review on sustainable approach for environmental restoration. Journal of environmental protection, 15(4): 450–474, doi: 10.4236/jep.2024.154026.
  24. Shan X., Wang H., Zhang S., Zhou H., Zheng Y., Yu H., Wen B., 2003. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Science, 165: 1343–1353, doi: 10.1016/S0168-9452(03)00361-3.
  25. Syso A.I., Syromlya T.I., Myadelets M.A., Cherevko A.S., 2016. Ecological and biogeochemical assessment of elemental and biochemical composition of the vegetation of anthropogenically disturbed ecosystems (based on the example of Achillea millefolium L.). Contemporary Problems of Ecology, 9: 643–651, doi: 10.1134/S1995425516050164.
  26. Takarina N.D., Pin D.G., 2017. Bioconcentration Factor (BCF) and Translocation Factor (TF) of heavy metal Mangrove trees of Blankan Fish Farma. Makara Journal of Science, 21: 78–81, doi: 10.7454/mss.v21i2.7308.
  27. Tao Y., Shen L., Feng C., Yang R., Qu J., Ju H., Zhang Y., 2022. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environmental Pollution, 298: 118540, doi: 10.1016/j.envpol.2021.118540.
  28. Wu J., Chen A., Peng A., Wei Z., Liu G., 2013. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant and Soil, 373: 329–338, doi: 10.1007/s11104-013-1811-0.
  29. Yadav S., Pandey V. C., Singh L., 2021. Ecological restoration of fly-ash disposal areas: Challenges and opportunities. LDD, Land degradation & development, 32(16): 4453–4471, doi:10.1002/ldr.4064.
  30. Yin X., Martineau C., Demers I., Basiliko N., Fenton N.J., 2021. The potential environmental risks associated with the development of rare earth element production in Canada. Environmental Risks, 29(3): 354–377, doi: 10.1139/er-2020-0115.
  31. Yoo G., Park S., Yang H., Nguyen X. N., Kim N., et al., 2017. Two New Phenolic Glycosides from the Aerial Part of Dryopteris erythrosora. Pharmacognosy Magasine, 13(52): 673–676, doi: 10.4103/pm.pm_326_16.
  32. Zhang H., Zhang K., Duan Y., Sun X., Lin L., et al., 2024. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica. Journal of Hazardous Materials, 465: 133266, doi: 10.1016/j.jhazmat.2023.133266.
  33. Zhou Y., Tian Y., Ollennu-Chuasam P., Kortesniemi M., Selander K., et al., 2024. Compositional characteristics of red clover (Trifolium pratense) seeds and supercritical CO2 extracted seed oil as potential sources of bioactive compounds. Food Innovation and Advances, 3(1): 11–19, doi: 10.48130/fia-0024-0002.
  34. Zulkernain N.H., Uvarajan T., Ng C.C., 2023. Roles and significance of chelating agents for potentially toxic elements (PTEs) phytoremediation in soil: A review. Journal of Environmental Management, 341: 117926.
DOI: https://doi.org/10.2478/cag-2025-0001 | Journal eISSN: 3071-740X | Journal ISSN: 2081-2787
Language: English
Page range: 1 - 16
Submitted on: Feb 14, 2025
Accepted on: Feb 24, 2025
Published on: Apr 30, 2025
Published by: Institute of Soil Science and Plant Cultivation
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Dominika Gmur, Grzegorz Siebielec, Monika Pecio, published by Institute of Soil Science and Plant Cultivation
This work is licensed under the Creative Commons Attribution 4.0 License.