Have a personal or library account? Click to login
Decision Tree Approach to Discovering Fraud in Leasing Agreements Cover

Decision Tree Approach to Discovering Fraud in Leasing Agreements

Open Access
|Sep 2014

References

  1. 1. Apté, C., Weiss, S. (1997), “Data mining with decision trees and decision rules”, Future Generation Computer Systems, Vol. 13, No. 2-3, pp. 197-210.10.1016/S0167-739X(97)00021-6
  2. 2. Bhattacharyya, S., et al. (2011), “Data mining for credit card fraud: A comparative study”, Decision Support Systems, Vol. 50, No. 3, pp. 602-613.10.1016/j.dss.2010.08.008
  3. 3. Coussement, K., Van den Bossche, F. A., De Bock, K. W. (2014), “Data accuracy’s impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees”, Journal of Business Research, Vol. 67, No. 1, pp. 2751-2758.10.1016/j.jbusres.2012.09.024
  4. 4. Huang, S. Y., Tsaih, R. H., Lin, W. Y. (2012), “Unsupervised neural networks approach for understanding fraudulent financial reporting”, Industrial Management & Data Systems, Vol. 112, No. 2, pp. 224-244.10.1108/02635571211204272
  5. 5. Li, X. B. (2005), “A scalable decision tree system and its application in pattern recognition and intrusion detection”, Decision Support Systems, Vol. 41, No. 1, pp.112-130.10.1016/j.dss.2004.06.016
  6. 6. McCarty, J. A., Hastak, M. (2007), “Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression”, Journal of Business Research, Vol. 60, No. 6, pp. 656-662.10.1016/j.jbusres.2006.06.015
  7. 7. Morais, A. I. (2013), “Why companies choose to lease instead of buy? Insights from academic literature”, Academia Revista Latinoamericana de Administración, Vol. 26, No. 3, pp. 432-446.10.1108/ARLA-07-2013-0091
  8. 8. Ngai, E.W.T. et al. (2011), “The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature”, Decision Support Systems, Vol. 50, No. 3, pp. 559-569.10.1016/j.dss.2010.08.006
  9. 9. Sinha, A.T., Zhao, H. (2008), “Incorporating domain knowledge into data mining classifiers: An application in indirect lending”, Decision Support Systems, Vol. 46, No. 1, pp. 287-299.10.1016/j.dss.2008.06.013
  10. 10. Smith, C. W., Wakeman, L. M. (1985), “Determinants of corporate leasing activity”, Journal of Finance, Vol. 40, No. 3, pp. 895-911.10.1111/j.1540-6261.1985.tb05016.x
  11. 11. Tsang, S. et al. (2011), “Decision trees for uncertain data”, Knowledge and Data Engineering, IEEE Transactions on, Vol. 23, No. 1, pp. 64-78.10.1109/TKDE.2009.175
  12. 12. Wu, S. X., Banzhaf, W. (2010), “The use of computational intelligence in intrusion detection systems: A review”, Applied Soft Computing, Vol. 10, No. 1, pp. 1-35.10.1016/j.asoc.2009.06.019
DOI: https://doi.org/10.2478/bsrj-2014-0010 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 61 - 71
Submitted on: Sep 21, 2013
|
Accepted on: Mar 28, 2014
|
Published on: Sep 10, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Ivan Horvat, Mirjana Pejić Bach, Marjana Merkač Skok, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.