Have a personal or library account? Click to login
Blooming charge assessment in apple orchards for automatic thinning activities Cover

Blooming charge assessment in apple orchards for automatic thinning activities

Open Access
|Dec 2019

References

  1. Aggelopoulou, K.D., Wulfsohn, D., Fountas, S., Gemtos, T.A., Nanos, G.D. and S. Blackmore (2010): Spatial variation in yield and quality in a small apple orchard. Precision Agriculture 11, 538–556.
  2. Albetis, J., Duthoit, S., Guttler F., Jacquin, A., Goulard, M., Poilvé, P., Féret, J.B. and G. Dedieu (2017): Detection of Flavescence dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sensing 9, 308.
  3. Bietresato, M., Carabin, G., Vidoni, R., Gasparetto, A. and F. Mazzetto (2016): Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications. Computers and Electronics Agriculture 124, 1–13.
  4. D’Auria, D., Ristorto, G., Persia, F., Vidoni, R. and F. Mazzetto (2016): Development and preliminary tests of a crop monitoring mobile lab based on a combined use of optical sensors. International Journal of Computer & Software Engineering 1, 103.
  5. Dias, P.A., Tabb, A. and H. Medeiros (2018): Apple flower detection using deep convolutional networks. Computers in Industry 99, 17–28.
  6. Di Gennaro, S.F., Battiston, E., Di Marco, S., Facini, O., Matese, A., Nocentini, M., Palliotti, A. and L. Mugnai (2016): Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex. Phytopathologia Mediterranea 55, 262–275.
  7. Gallo, R., Ristorto, G., Daglio, G., Massa, N., Berta, G., Lazzari, M. and F. Mazzetto (2017): New solutions for the automatic early detection of diseases in vineyards through ground sensing approaches integrating lidar and optical sensors, Chemical Engineering Transactions 58, 673–678.
  8. Gongal, A., Karkee, M. and S. Amatya (2018): Apple fruit size estimation using a 3D machine vision system. Information Processing Agriculture 5, 498–503.
  9. Hočevar, M., Širok, B., Godeša, T. and M. Stopar (2014): Flowering estimation in apple orchards by image analysis. Precision Agriculture 15, 466–478.
  10. Maharlooei, M., Sivarajan, S., Nowatzki, J., Bajwa, S.G. and H. Kandel (2014): Evaluation of in-field sensors to monitor nitrogen status in soybean crops. 12th International Conference on Precision Agriculture, 20–23 July 2014, Sacramento, California, International Society of Precision Agriculture.
  11. Ristorto, G., Gallo, R., Gasparetto, A., Scalera, L., Vidoni, R. and F. Mazzetto (2017): A mobile laboratory for orchard health status monitoring in precision farming. Chemical Engineering Transactions 58, 661–666.
  12. Rosell, J.R, Llorens, j., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., Escolá, A., Camp, F., Solanelles, F., Gràcia, F., Gil, E., Val, L., Planas, S. and J. Palacin (2009): Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology 149, 1505–1515.
  13. Xiao, C., Zheng, L., Sun, H., Zhang, Y. and M. Li (2014): Estimation of the apple flowers based on aerial multi-spectral image. American Society of Agricultural and Biological Engineers, Paper No. 141912593.
DOI: https://doi.org/10.2478/boku-2019-0015 | Journal eISSN: 2719-5430 | Journal ISSN: 0006-5471
Language: English
Page range: 171 - 180
Submitted on: Jul 2, 2019
Accepted on: Aug 19, 2019
Published on: Dec 31, 2019
Published by: Universität für Bodenkultur Wien
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Gabriele Daglio, Raimondo Gallo, Fabrizio Mazzetto, published by Universität für Bodenkultur Wien
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.