Have a personal or library account? Click to login

The Expression Profile of Wnt/β-Catenin Signalling Pathway Genes in Miscarriages

Open Access
|Oct 2025

References

  1. A. G. Kanmaz, A. H. İnan, E. Beyan, and A. Budak, “The effects of threatened abortions on pregnancy outcomes.,” Ginekol. Pol., vol. 90, no. 4, pp. 195–200, 2019.
  2. L. George et al., “Plasma folate levels and risk of spontaneous abortion.,” JAMA, vol. 288, no. 15, pp. 1867–1873, Oct. 2002.
  3. A. J. Wilcox et al., “Incidence of Early Loss of Pregnancy,” N. Engl. J. Med., vol. 319, no. 4, pp. 189–194, Jul. 1988.
  4. M. J. Zinaman, E. D. Clegg, C. C. Brown, J. O'Connor, and S. G. Selevan, “Estimates of human fertility and pregnancy loss*†*Supported by grant CR-820787 from the United States Environmental Protection Agency, Washington, D.C.†The views expressed in this paper are those of the authors and do not necessarily reflect the views or ,” Fertil. Steril., vol. 65, no. 3, pp. 503–509, 1996.
  5. C. P. Griebel, J. Halvorsen, T. B. Golemon, and A. A. Day, “Management of spontaneous abortion,” Am. Fam. Physician, vol. 72, no. 7, pp. 1243–1250, 2005.
  6. N. Maconochie, P. Doyle, S. Prior, and R. Simmons, “Risk factors for first trimester miscarriage—results from a UK-population-based case–control study,” BJOG An Int. J. Obstet. Gynaecol., vol. 114, no. 2, pp. 170–186, 2007.
  7. J. D. Birch, D. Gulati, and S. Mandalia, “Cervical shock: A complication of incomplete abortion,” BMJ Case Rep., vol. 2017, 2017.
  8. L. George, F. Granath, A. L. V Johansson, B. Olander, and S. Cnattingius, “Risks of repeated miscarriage.,” Paediatr. Perinat. Epidemiol., vol. 20, no. 2, pp. 119–126, Mar. 2006.
  9. T. Philipp, K. Philipp, A. Reiner, F. Beer, and D. K. Kalousek, “Embryoscopic and cytogenetic analysis of 233 missed abortions: Factors involved in the pathogenesis of developmental defects of early failed pregnancies,” Hum. Reprod., vol. 18, no. 8, pp. 1724–1732, 2003.
  10. R. Raghupathy, “The immunology of unexplained recurrent spontaneous abortion: cytokines as key mediators,” Bull. Kuwait Inst. Med. Spec, no. March, pp. 32–38, 2003.
  11. A. Friebe and P. Arck, “Causes for spontaneous abortion: What the bugs ‘gut’ to do with it?,” Int. J. Biochem. Cell Biol., vol. 40, no. 11, pp. 2348–2352, 2008.
  12. M. C. Magnus, A. J. Wilcox, N. H. Morken, C. R. Weinberg, and S. E. Håberg, “Role of maternal age and pregnancy history in risk of miscarriage: Prospective register based study,” BMJ, vol. 364, pp. 1–8, 2019.
  13. K. E. Brett, Z. M. Ferraro, J. Yockell-Lelievre, A. Gruslin, and K. B. Adamo, “Maternal–Fetal nutrient transport in pregnancy pathologies: The role of the placenta,” Int. J. Mol. Sci., vol. 15, no. 9, pp. 16153–16185, 2014.
  14. D. Cimadomo, G. Fabozzi, A. Vaiarelli, N. Ubaldi, F. M. Ubaldi, and L. Rienzi, “Impact of maternal age on oocyte and embryo competence,” Front. Endocrinol. (Lausanne)., vol. 9, no. JUL, 2018.
  15. L. Woods, V. Perez-Garcia, and M. Hemberger, “Regulation of Placental Development and Its Impact on Fetal Growth—New Insights From Mouse Models,” Front. Endocrinol. (Lausanne)., vol. 9, no. September, pp. 1–18, 2018.
  16. J. Pollheimer et al., “Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast,” Am. J. Pathol., vol. 168, no. 4, pp. 1134–1147, 2006.
  17. M. Knöfler and J. Pollheimer, “Human placental trophoblast invasion and differentiation: A particular focus on Wnt signaling,” Front. Genet., vol. 4, no. SEP, pp. 1–14, 2013.
  18. S. Sonderegger, H. Husslein, C. Leisser, and M. Knöfler, “Complex Expression Pattern of Wnt Ligands and Frizzled Receptors in Human Placenta and its Trophoblast Subtypes,” Placenta, vol. 28, no. SUPPL., 2007.
  19. H. Clevers, “Wnt/β-Catenin Signaling in Development and Disease,” Cell, vol. 127, no. 3, pp. 469–480, 2006.
  20. H. Clevers and R. Nusse, “Wnt/β-catenin signaling and disease,” Cell, vol. 149, no. 6, pp. 1192–1205, 2012.
  21. B. T. MacDonald, K. Tamai, and X. He, “Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases,” Dev. Cell, vol. 17, no. 1, pp. 9–26, 2009.
  22. Q. Chen et al., “Embryo – uterine cross-talk during implantation : the role of Wnt signaling †,” vol. 15, no. 4, pp. 215–221, 2009.
  23. C. Kemp, E. Willems, S. Abdo, L. Lambiv, and L. Leyns, “Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and post-implantation development,” Dev. Dyn., vol. 233, no. 3, pp. 1064–1075, 2005.
  24. S. Li, N. Li, P. Zhu, Y. Wang, Y. Tian, and X. Wang, “Decreased β-catenin expression in first-trimester villi and decidua of patients with recurrent spontaneous abortion,” J. Obstet. Gynaecol. Res., vol. 41, no. 6, pp. 904–911, 2015.
  25. J. J. Sanz-Ezquerro, A. E. Münsterberg, and S. Stricker, “Editorial: Signaling pathways in embryonic development,” Front. Cell Dev. Biol., vol. 5, no. AUG, pp. 1–3, 2017.
  26. M. Gentzel and A. Schambony, “Dishevelled paralogs in vertebrate development: Redundant or distinct?,” Front. Cell Dev. Biol., vol. 5, no. MAY, pp. 1–8, 2017.
  27. H. Ciarke, C. Labeiie-Dumais, O. Mohamed, D. Dufort, K. Kuroda, and M. Jonnaert, “Uterine Wnt/ß-catenin signaling is required for implantation,” Proc. Natl. Acad. Sci. U. S. A., no. 24, pp. 8579–8584, 2005.
  28. R. R. Tekmal and N. Keshava, “Role of MMTV integration locus cellular genes in breast cancer.,” Front. Biosci., vol. 2, 1997.
  29. B. Scholz et al., “Endothelial RSPO3 Controls Vascular Stability and Pruning through Non-canonical WNT/Ca2+/NFAT Signaling,” Dev. Cell, vol. 36, no. 1, pp. 79–93, 2016.
  30. J. K. Sethi and A. Vidalpuig, “Europe PMC Funders Group Wnt signalling and the control of cellular metabolism,” vol. 427, no. 1, pp. 1–17, 2015.
  31. T. W. Holstein, “The evolution of the wnt pathway,” Cold Spring Harb. Perspect. Biol., vol. 4, no. 7, pp. 1–17, 2012.
  32. J. R. Miller, “The Wnts,” Genome Biol., vol. 3, no. 1, pp. 1–15, 2002.
  33. “Definitions of infertility and recurrent pregnancy loss,” Fertil. Steril., vol. 89, no. 6, p. 1603, 2008.
  34. H. Kleinert, J. Art, and A. Pautz, Regulation of the Expression of Inducible Nitric Oxide Synthase, Second Edi., no. i. Elsevier Inc., 2010.
  35. A. de Jaime-Soguero, W. A. A. De Oliveira, and F. Lluis, “The pleiotropic effects of the canonical wnt pathway in early development and pluripotency,” Genes (Basel)., vol. 9, no. 2, pp. 1–23, 2018.
  36. C. Kaloǧlu,, E. Gürsoy, and B. Onarlioǧlu, “Early maternal changes contributing to the formation of the chorioallantoic and yolk sac placentas in rat: A morphological study,” J. Vet. Med. Ser. C Anat. Histol. Embryol., vol. 32, no. 4, pp. 200–206, 2003.
  37. F. Benz et al., “Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice,” Elife, vol. 8, pp. 1–29, 2019.
  38. L. F. Ng et al., “WNT Signaling in Disease,” Cells, vol. 8, no. 8, 2019.
  39. I. Kozmikova and Z. Kozmik, “Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer,” Elife, vol. 9, no. Dv, pp. 1–29, 2020.
  40. K. W. Pond, K. Doubrovinski, and C. A. Thorne, “WNT/β-catenin signaling in tissue self-organization,” Genes (Basel)., vol. 11, no. 8, pp. 1–18, 2020.
  41. A. N. Ramirez, K. Loubet-Senear, and M. Srivastava, “A Regulatory Program for Initiation of Wnt Signaling during Posterior Regeneration,” Cell Rep., vol. 32, no. 9, p. 108098, 2020.
  42. M. Krivega, W. Essahib, and H. Van De Velde, “b-catenin regulate trophectoderm lineage differentiation in human blastocysts,” vol. 21, no. 9, pp. 711–722, 2015.
  43. S. H. Bao, W. Shuai, J. Tong, L. Wang, P. Chen, and T. Duan, “Increased Dickkopf-1 expression in patients with unexplained recurrent spontaneous miscarriage,” Clin. Exp. Immunol., vol. 172, no. 3, pp. 437–443, 2013.
  44. Q. Zhu, Y. Dong, L. Zhang, and H. Xia, “is involved in missed abortion by targeting,” 2016.
  45. E. Chronopoulou et al., “in human placental tissue – is there a link with first trimester miscarriage ? Results from a pilot study,” vol. 4, pp. 1–10, 2022.
  46. J. W. Jeong et al., “β-Catenin Mediates Glandular Formation and Dysregulation of β-Catenin Induces Hyperplasia Formation in the Murine Uterus,” Oncogene, vol. 28, no. 1, pp. 31–40, 2009.
  47. L. Chen, J. Wang, X. Fan, Y. Zhang, M. Zhoua, and X. Li, “LASP2 inhibits trophoblast cell migration and invasion in preeclampsia through inactivation of the Wnt / β -catenin signaling pathway,” J. Recept. Signal Transduct., vol. 41, no. 1, pp. 67–73, 2021.
  48. Z. Zhang, X. Wang, L. Zhang, Y. Shi, J. Wang, and H. Yan, “Wnt / β -catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia ( Review ),” pp. 1007–1013, 2017.
  49. H. Bao et al., “Hyperactivated Wnt-β-catenin signaling in the absence of sFRP1 and sFRP5 disrupts trophoblast differentiation through repression of Ascl2,” BMC Biol., vol. 18, no. 1, pp. 1–14, 2020.
  50. H. J. A. Carp, “Recurrent pregnancy loss,” Evidence-based Obstet. Gynecol., pp. 131–144, 2018.
  51. A. C. Denicol, K. B. Dobbs, K. M. McLean, S. F. Carambula, B. Loureiro, and P. J. Hansen, “Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage,” Sci. Rep., vol. 3, pp. 1–7, 2013.
  52. H. W. Park et al., “Alternative Wnt Signaling Activates YAP/TAZ,” Cell, vol. 162, no. 4, pp. 780–794, 2015.
  53. S. Sonderegger, J. Pollheimer, and M. Knöfler, “Wnt signalling in implantation, decidualisation and placental differentiation - Review,” Placenta, vol. 31, no. 10, pp. 839–847, 2010.
  54. C. Apicella, C. S. M. Ruano, C. Méhats, F. Miralles, and D. Vaiman, “The role of epigenetics in placental development and the etiology of preeclampsia,” Int. J. Mol. Sci., vol. 20, no. 11, 2019.
  55. K. Hayashi et al., “Wnt genes in the mouse uterus: Potential regulation of implantation,” Biol. Reprod., vol. 80, no. 5, pp. 989–1000, 2009.
  56. L. Ring, P. Neth, C. Weber, S. Steffens, and A. Faussner, “β-Catenin-dependent pathway activation by both promiscuous ‘canonical’ WNT3a-, and specific ‘noncanonical’ WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency,” Cell. Signal., vol. 26, no. 2, pp. 260–267, 2014.
  57. Z. Zhang, H. Li, L. Zhang, L. Jia, and P. Wang, “Differential expression of β-catenin and Dickkopf-1 in the third trimester placentas from normal and preeclamptic pregnancies: a comparative study.,” Reprod. Biol. Endocrinol., vol. 11, pp. 1–9, 2013.
  58. G. J. Burton, E. Jauniaux, and D. S. Charnock-Jones, “The influence of the intrauterine environment on human placental development,” Int. J. Dev. Biol., vol. 54, no. 2–3, pp. 303–311, 2010.
  59. Y. Zhou, C. H. Damsky, and S. J. Fisher, “Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype: One cause of defective endovascular invasion in this syndrome?,” J. Clin. Invest., vol. 99, no. 9, pp. 2152–2164, 1997.
  60. C. A. Labarrere and O. H. Althabe, “Inadequate maternal vascular response to placentation in pregnancies complicated by preeclampsia and by small-forgestational-age infants.,” British journal of obstetrics and gynaecology, vol. 94, no. 11. England, pp. 1113–1116, Nov-1987.
  61. Y. M. Kim et al., “Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes.,” Am. J. Obstet. Gynecol., vol. 189, no. 4, pp. 1063–1069, Oct. 2003.
  62. M. Knöfler, “Critical growth factors and signalling pathways controlling human trophoblast invasion,” Int. J. Dev. Biol., vol. 54, no. 2–3, pp. 269–280, 2010.
  63. M. Mericskay, J. Kitajewski, and D. Sassoon, “Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus,” Development, vol. 131, no. 9, pp. 2061–2072, 2004.
  64. J. Cha et al., “Appropriate Crypt Formation in the Uterus for Embryo Homing and Implantation Requires Wnt5a-ROR Signaling,” Cell Rep., vol. 8, no. 2, pp. 382–392, 2014.
  65. E. Gómez-Orte, B. Sáenz-Narciso, S. Moreno, and J. Cabello, “Multiple functions of the noncanonical Wnt pathway.,” Trends Genet., vol. 29, no. 9, pp. 545–553, Sep. 2013.
  66. A. Vukasovic et al., “Glycosylation pattern and axin expression in normal and IUGR placentae,” J. Matern. & Neonatal Med., vol. 28, no. 5, pp. 558–563, 2015.
  67. R. Pijnenborg et al., “Placental bed spiral arteries in the hypertensive disorders of pregnancy.,” Br. J. Obstet. Gynaecol., vol. 98, no. 7, pp. 648–655, Jul. 1991.
  68. A. E. Sedgwick and C. D'Souza-Schorey, “Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer.,” Cancers (Basel)., vol. 8, no. 9, Aug. 2016.
  69. J. Z. Partl, D. Fabijanovic, A. Skrtic, S. Vranic, T. N. Martic, and L. Serman, “Immunohistochemical expression of SFRP1 and SFRP3 proteins in normal and malignant reproductive tissues of rats and humans.,” Appl. Immunohistochem. Mol. Morphol. AIMM, vol. 22, no. 9, pp. 681–687, Oct. 2014.
  70. I. M. Sola et al., “Dishevelled family proteins (Dvl1-3) expression in iugr placentas,” Bosn. J. Basic Med. Sci., vol. 21, no. 4, pp. 447–453, 2021.
  71. C. Ota, H. A. Baarsma, D. E. Wagner, A. Hilgendorff, and M. Königshoff, “Linking bronchopulmonary dysplasia to adult chronic lung diseases: role of WNT signaling,” Mol. Cell. Pediatr., vol. 3, no. 1, 2016.
  72. E. Grassilli et al., “GSK3A Is Redundant with GSK3B in Modulating Drug Resistance and Chemotherapy-Induced Necroptosis,” PLoS One, vol. 9, no. 7, p. e100947, Jul. 2014.
  73. C. Y. Logan and R. Nusse, “THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE,” Annu. Rev. Cell Dev. Biol., vol. 20, no. 1, pp. 781–810, Oct. 2004.
  74. R. van Amerongen and R. Nusse, “Towards an integrated view of Wnt signaling in development,” Development, vol. 136, no. 19, pp. 3205–3214, 2009.
  75. N. R. Gough, “Focus issue: Wnt and β-catenin signaling in development and disease,” Sci. Signal., vol. 5, no. 206, pp. 1–3, 2012.
  76. C. C. Huang et al., “The duration of pre-ovulatory serum progesterone elevation before hCG administration affects the outcome of IVF/ICSI cycles,” Hum. Reprod., vol. 27, no. 7, pp. 2036–2045, 2012.
  77. E. Bosch et al., “Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: Analysis of over 4000 cycles,” Hum. Reprod., vol. 25, no. 8, pp. 2092–2100, 2010.
  78. E. Bosch, “Comment on: Is progesterone elevation on the day of human chorionic gonadotrophin administration associated with the probability of pregnancy in in vitro fertilization? A systematic review and meta-analysis. By Venetis et al (2007) [3],” Hum. Reprod. Update, vol. 14, no. 2, pp. 194–195, 2008.
  79. Y. Xiong et al., “Effects of high progesterone in invitro fertilization cycle on DNA methylation and gene expression of adhesion molecules on endometrium during implantation window,” J. Assist. Reprod. Genet., vol. 37, no. 1, pp. 33–43, 2020.
  80. E. Dejana, “The role of wnt signaling in physiological and pathological angiogenesis,” Circ. Res., vol. 107, no. 8, pp. 943–952, 2010.
  81. R. Rai et al., “Factor V leiden and acquired activated protein C resistance among 1000 women with recurrent miscarriage,” Hum. Reprod., vol. 16, no. 5, pp. 961–965, 2001.
  82. P. G. Lindqvist, P. Svensson, and B. Dahlbäck, “Activated protein C resistance - In the absence of factor V Leiden - And pregnancy,” J. Thromb. Haemost., vol. 4, no. 2, pp. 361–366, 2006.
  83. B. Mahieu et al., “Haemostatic changes and acquired activated protein C resistance in normal pregnancy,” Blood Coagul. Fibrinolysis, vol. 18, no. 7, pp. 685–688, 2007.
Language: English
Published on: Oct 8, 2025
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 E Gulseren, C B A Garber, T Hamad Al, A C Ozay, G Mocan, G S Temel, C M Ergoren, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.