Have a personal or library account? Click to login
CREBBP is a Major Prognostic Biomarker for Relapse in Childhood B-cell Acute Lymphoblastic Leukemia: A National Study of Unselected Cohort Cover

CREBBP is a Major Prognostic Biomarker for Relapse in Childhood B-cell Acute Lymphoblastic Leukemia: A National Study of Unselected Cohort

Open Access
|Mar 2025

References

  1. Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®)-NCI. Available online: https://www.cancer. gov/types/leukemia/hp/child-all-treatment-pdq (accessed on 16.10.2024).
  2. SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html?site=92&data_type=1&graph_ type=1&compareBy=sex&chk_sex_1=1&rate_ type=2&race=1&age_range=16&advopt_ precision=1&advopt_show_ci=on&hdn_ view=0&advopt_show_apc=on&advopt_ display=2#resultsRegion0 (accessed on 16.10.2024)
  3. Forero RM, Hernández M, Hernández-Rivas JM. Genetics of Acute Lymphoblastic Leukemia. In <em>Leukemia</em>. Prof. Margarita Guenova (Ed.); IntechOpen: London, UK, 2013; doi:<a href="https://doi.org/10.5772/55504" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5772/55504</a>
  4. Studd JB, Cornish AJ, Hoang PH, Law P, Kinnersley B, Houlston R. Cancer drivers and clonal dynamics in acute lymphoblastic leukaemia subtypes. <em>Blood Cancer J</em>. <bold>2021</bold>;<em>11(11):</em>1-10. doi:<a href="https://doi.org/10.1038/s41408-021-00570-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41408-021-00570-9</a>
  5. Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. <em>Hematology</em>. <bold>2012</bold>;<em>2012(1):</em>389-396. doi:<a href="https://doi.org/10.1182/asheducation.V2012.1.389.3798360" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/asheducation.V2012.1.389.3798360</a>
  6. Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. <em>Blood</em>. <bold>2015</bold>;<em>125(26)</em>:3977-3987. doi:<a href="https://doi.org/10.1182/blood-2015-02-580043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood-2015-02-580043</a>
  7. Woo JS, Alberti MO, Tirado CA. Childhood B-acute lymphoblastic leukemia: a genetic update. <em>Exp. hema-tol. oncol</em>. <bold>2014</bold>;<em>3(1):</em>16. doi:<a href="https://doi.org/10.1186/2162-3619-3-16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/2162-3619-3-16</a>
  8. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. <em>The Lancet</em>. <bold>2013</bold>;<em>381(9881):</em>1943-1955. doi:<a href="https://doi.org/10.1016/S0140-6736(12)62187-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0140-6736(12)62187-4</a>
  9. Rob Pieters, Charles G. Mullighan, Stephen P. Hunger. Advancing Diagnostics and Therapy to Reach Universal Cure in Childhood ALL. <em>J. Clin. Oncol</em>. <bold>2023</bold>;<em>41</em>:5579-5591. doi:<a href="https://doi.org/10.1200/JCO.23.01286" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1200/JCO.23.01286</a>
  10. Chang TC, Chen W, Qu C, et al. Genomic Determinants of Outcome in Acute Lymphoblastic Leukemia. <em>J. Clin. Oncol</em>. <bold>2024</bold>;<em>42(29):</em>3491-3503. doi:<a href="https://doi.org/10.1200/JCO.23.02238" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1200/JCO.23.02238</a>
  11. Brady SW, Roberts KG, Gu Z, et al. The genomic landscape of pediatric acute lymphoblastic leukemia. <em>Nat Genet</em>. <bold>2022</bold>;<em>54(9):</em>1376-1389. doi:<a href="https://doi.org/10.1038/s41588-022-01159-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41588-022-01159-z</a>
  12. Morscio J, Van Vlierberghe P. Chemotherapy at the wheel of ALL relapse. <em>Blood</em>. <bold>2020</bold>;<em>135(1):</em>4-5. doi:<a href="https://doi.org/10.1182/blood.2019003870" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood.2019003870</a>
  13. Mullighan CG, Phillips LA, Su X, et al. Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia. <em>Science</em>. <bold>2008</bold>;<em>322(5906):</em>1377-1380. doi:<a href="https://doi.org/10.1126/science.1164266" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/science.1164266</a>
  14. Zhang H, Wang H, Qian X, et al. Genetic mutational analysis of pediatric acute lymphoblastic leukemia from a single center in China using exon sequencing. <em>BMC Cancer</em>. <bold>2020</bold>;<em>20(1):</em>211. doi:<a href="https://doi.org/10.1186/s12885-020-6709-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12885-020-6709-7</a>
  15. Ueno H, Yoshida K, Shiozawa Y, et al. Landscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic leukemia. <em>Blood Adv</em>. <bold>2020</bold>;<em>4(20):</em>5165. doi:<a href="https://doi.org/10.1182/bloodad-vances.2019001307" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/bloodad-vances.2019001307</a>
  16. van Dongen JJM, Langerak AW, Brüggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. <em>Leukemia</em>. <bold>2003</bold>;<em>17(12):</em>2257-2317. doi:<a href="https://doi.org/10.1038/sj.leu.2403202" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/sj.leu.2403202</a>
  17. Krstevska Bozhinovikj E, Matevska-Geshkovska N, Stojovska M, et al. Presence of Minimal Residual Disease Determined by Next-Generation Sequencing Is Not a Reliable Prognostic Biomarker in Children with Acute Lymphoblastic Leukemia. <em>Leuk Lymphoma</em> 2024 <em>(submitted)</em> doi:<a href="https://doi.org/10.22541/au.172536128.83797266/v1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.22541/au.172536128.83797266/v1</a>
  18. van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. <em>Leukemia</em>. <bold>1999</bold>;<em>13(12):</em>1901-1928. doi:<a href="https://doi.org/10.1038/sj.leu.240159" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/sj.leu.240159</a>
  19. ALL IC-BFM 2009 A randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia; Available online: https://ascopubs.org/doi/suppl/10.1200/JCO.22.01760/suppl_file/protocol1_jco.22.01760.pdf (accessed 16.10.2024)
  20. Stanulla M, Dagdan E, Zaliova M, et al. IKZF1p-lus Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. <em>J. Clin. Oncol</em>. <bold>2018</bold>;<em>36(12)</em>:1240-1249. doi:<a href="https://doi.org/10.1200/JCO.2017.74.3617" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1200/JCO.2017.74.3617</a>
  21. Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? <em>Blood</em>. <bold>2012</bold>;<em>120(6)</em>:1165-1174. doi:<a href="https://doi.org/10.1182/blood-2012-05-378943" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood-2012-05-378943</a>
  22. Li B, Brady SW, Ma X, et al. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. <em>Blood</em>. <bold>2020</bold>;<em>135(1):</em>41-55. doi:<a href="https://doi.org/10.1182/blood.2019002220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood.2019002220</a>
  23. Oshima K, Khiabanian H, da Silva-Almeida AC, et al. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. <em>Proc Natl Acad Sci U S A</em>. <bold>2016</bold>;<em>113(40):</em>11306-11311. doi:<a href="https://doi.org/10.1073/pnas.1608420113" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1073/pnas.1608420113</a>
  24. Sayyab S, Lundmark A, Larsson M, et al. Mutational patterns and clonal evolution from diagnosis to relapse in pediatric acute lymphoblastic leukemia. <em>Sci Rep</em>. <bold>2021</bold>;<em>11(1):</em>15988. doi:<a href="https://doi.org/10.1038/s41598-021-95109-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41598-021-95109-0</a>
  25. Malinowska-Ozdowy K, Frech C, Schönegger A, et al. KRAS and CREBBP mutations: a relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia. <em>Leukemia</em>. <bold>2015</bold>;<em>29(8):</em>1656-1667. doi:<a href="https://doi.org/10.1038/leu.2015.107" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/leu.2015.107</a>
  26. Zhu Y, Wang Z, Li Y, et al. The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. <em>Cancers</em>. <bold>2023</bold>;<em>15(4):</em>1219. doi:<a href="https://doi.org/10.3390/cancers15041219" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/cancers15041219</a>
  27. Ramírez-Komo JA, Delaney MA, Straign D, et al. Spontaneous loss of B lineage transcription factors leads to pre-B leukemia in Ebf1+/–Bcl-xLTg mice. <em>Oncogenesis</em>. <bold>2017</bold>;<em>6(7):</em>e355-e355. doi:<a href="https://doi.org/10.1038/oncsis.2017.55" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/oncsis.2017.55</a>
  28. Yang JJ, Bhojwani D, Yang W, et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. <em>Blood</em>. <bold>2008</bold>;<em>112(10):</em>4178-4183. doi:<a href="https://doi.org/10.1182/blood-2008-06-165027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood-2008-06-165027</a>
  29. Li X, Lin S, Liao N, et al. The RAS-signaling-pathway-mutation-related prognosis in B-cell acute lymphoblastic leukemia: A report from South China children’s leukemia group. <em>Hematol. Oncol</em>. <bold>2024</bold>;<em>42(3):</em>e3265. doi:<a href="https://doi.org/10.1002/hon.3265" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/hon.3265</a>
  30. Park KJ, Kim IS. Clinically actionable mutations identified in Korean patients with high-risk acute lymphoblastic leukemia. <em>Ann Oncol</em>. <bold>2018</bold>;<em>29</em>:viii370-viii371. doi:<a href="https://doi.org/10.1093/annonc/mdy286.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/annonc/mdy286.036</a>
  31. Vervoort BMT, Butler M, Grünewald KJT, et al. IKZF1 gene deletions drive resistance to cytarabine in B-cell precursor acute lymphoblastic leukemia. <em>Haematologica</em>. Published online June 6, <bold>2024</bold>. doi:<a href="https://doi.org/10.3324/haematol.2023.284357" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3324/haematol.2023.284357</a>
  32. Stanulla M, Cavé H, Moorman AV. IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? <em>Blood</em>. <bold>2020</bold>;<em>135(4):</em>252-260. doi:<a href="https://doi.org/10.1182/blood.2019000813" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood.2019000813</a>
  33. Feng J, Guo Y, Yang W, et al. Childhood Acute B-Lineage Lymphoblastic Leukemia With CDKN2A/B Deletion Is a Distinct Entity With Adverse Genetic Features and Poor Clinical Outcomes. <em>Front Oncol</em>. <bold>2022</bold>;<em>12</em>. doi:<a href="https://doi.org/10.3389/fonc.2022.878098" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fonc.2022.878098</a>
  34. Ampatzidou M, Papadhimitriou SI, Paisiou A, et al. The Prognostic Effect of CDKN2A/2B Gene Deletions in Pediatric Acute Lymphoblastic Leukemia (ALL): Independent Prognostic Significance in BFM-Based Protocols. <em>Diagnostics</em>. <bold>2023</bold>;<em>13(9):</em>1589. doi:<a href="https://doi.org/10.3390/diagnostics13091589" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/diagnostics13091589</a>
  35. Oshima K, Zhao J, Pérez-Durán P, et al. Mutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. <em>Nat Cancer</em>. <bold>2020</bold>;<em>1(11):</em>1113-1127. doi:<a href="https://doi.org/10.1038/s43018-020-00124-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s43018-020-00124-1</a>
Language: English
Page range: 5 - 12
Published on: Mar 6, 2025
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 E Krstevska Bozhinovikj, N Matevska-Geshkovska, M Staninova Stojovska, E Gjorgievska, A Jovanovska, S Kocheva, A Dimovski, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.