Annunziata, M. G., Ciarmiello, L. F., Woodrow, P., Maximova, E., Fuggi, A., Carillo, P. (2017). Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose, Frontiers in Plant Science; Vol 7.
Bacu, A., Hoxha, R., Kristollari, K. (2024). Different Level of Tolerance to Herbicides is Displayed by Triticum aestivum L. Cultivars Depending on Herbicide Category and Mode of Application. Artikull Shkencor; The EuroBiotech Journal, 8(1):44-54, DOI: 10.2478/ebtj-2024-0005.
Bacu, A., Ibro, V., Nushi, M., Krekaj, M., Kristollari, K. (2020). Rubisco genes expression and pigment synthesis at early stages of development of wheat cultivar Dajti under saline stress conditions. Journal of Environmental Protection and Ecology 21, No 4, 1239–1246.
Bacu, A., Ibro, V., Nushi, M. (2020). Compared salt tolerance of five local wheat (Triticum aestivum L.) cultivars of Albania based on morphology, pigment synthesis and glutathione content. The EuroBiotech Journal, Vol 4, Issue 1. DOI: 10.2478/ebtj-2020-0006.
Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 40 4–10. 10.1111/pce.12800-DOI-PubMed
Bos, V., Kunst, A.E., Mackenbach, J.P. (2000). Nationale gegevens over sociaaleconomische sterfteverschillen op basis van informatie over kleine geografische eenheden. Verslag aan de programmacommissie Sociaaleconomische gezondheidsverschillen II. Instituut Maatschappelijke Gezondheidszorg, Erasmus Universiteit: Rotterdam.
Chauhan, H., Khurana, N., Tyagi, A.K., Khurana, J.P., Khurana, P. (2011). Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol, 75:35-51
Degen, G.E., Orr, D.J., Carmo-Silva, E. (2021). Heat-induced changes in the abundance of wheat Rubisco activase isoforms. New Phytol, 229 (3):1298-1311. DOI: 10.1111/nph.16937.
Fan, Y., Ma, C., Huang, Z., Abid, M., Jiang, S., Dai, T., Zhang, W., Ma, S., Jiang, D., Han, X. (2018). Heat Priming During Early Reproductive Stages Enhances Thermo-Tolerance to Post-anthesis Heat Stress via Improving Photosynthesis and Plant Productivity in Winter Wheat (Triticum aestivum L.) Front. Plant Sci., Sec. Crop and Product Physiology, Volume 9, https://doi.org/10.3389/fpls.2018.00805
Habti, A.E., Fleury, D., Jewell, N., Garnett, T. and Tricker, P.J. (2020). Tolerance of combined drought and heat stress is associated with transpiration maintenance and water-soluble carbohydrates in wheat grains. Front. Plant Sci. 11:568693. DOI: 10.3389/fpls.2020.568693
Hiscox, J.D., Israelstam, G.F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany; 57: 1332-1334.
Ibro, V., Bacu, A., Kaloshi, A., Coka, E., Kokojka, F. (2019). Drought tolerance and thiols molarity in seedlings of two Aegilops accessions. Albanian J. Agric. Sci.; (Special edition). International Conference “Challenges in Biotechnological and Environmental Approaches”, April 23 – 24, pg 13-19.
Iqbal, M., Raja, N.I., Yasmeen, F., Hussain, M., Ejaz, M., et al. (2017). Impacts of Heat Stress on Wheat: A Critical Review. Adv Crop Sci Tech 5: 251. DOI: 10.4172/2329-8863.1000251
Khan, A., Ahmad, M., Ahmed, M., Iftikhar Hussain, M. (2020). Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. Plants (Basel). 27; 10(1):43. DOI: 10.3390/plants10010043. PMID: 33375473; PMCID: PMC7823633.
Khanzada, A., Feng, K., Wang, X., Cai, J., Malko, M.M., Samo, A., Hossain, Md. N., Jiang, D. (2021). Comprehensive evaluation of high-temperature tolerance induced by heat priming at early growth stages in winter wheat. Physiologia Plantarum, 2021. DOI: 10.1111/ppl.13759
Kokojka, F., Bacu, A., Shahini, Sh., Medha, Gj. (2021). Tribenuron-methyl treatment affects glutathione metabolization and other physiological processes in bread wheat. International Journal of Pest Management, DOI: 10.1080/09670874.2021.1916123.
Lamaoui M, Jemo M, Datla R, Bekkaoui F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Front Chem. 6:26–30. DOI: 10.3389/fchem.2018.00026.
Law, R.D., Crafts-Brandner, S.J. (1999). Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120: 173–181.
Liu, P., Guo, W., Jiang, Z., Pu, H., Feng, C., Zhu, X. (2011). Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). J Agric Sci.; 149(2):159-169.
Mishra, D., Shekhar, Sh., Chakraborty, S., Chakraborty, N. (2021). High temperature stress responses and wheat: Impacts and alleviation strategies, Environmental and Experimental Botany, Volume 190, 104589, ISSN 0098-8472, https://doi.org/10.1016/j.envexpbot.2021.104589.
Mishra, D., Shekhar, Sh., Agrawal, L., Chakraborty, S., Chakraborty, N. (2017). Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defence pathways. Food Chem. 15; 221:1077-1087. DOI: 10.1016/j.foodchem.2016.11.053.
Mohan D, Mamrutha HM, Tyagi BS. (2017). Weather conditions favouring wheat (Triticum aestivum L.) productivity in hot climate of central India and congenial environment of northwestern plains. Indian J Agric Sci. 87:278–281. [Google Scholar]
Poudel, P.B. and Poudel, M.R. (2020). Heat Stress Effects and Tolerance in Wheat: A Review. Journal of Biology and Today’s World, Review Article, Volume 9, Issue 3. ISSN - 2322-3308.
Prasad, P.V.V., Boote, K.J., Allen, L.H., Sheehy, J.E., Thomas, J.M.G. (2006). Species, ecotype and cultivar diff erences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95: 398-411.
Ribaudo, R., Gilman, M., Kingston, R.E., Choczynski, P. and Sacchi, N. (2001). Preparation of RNA from tissues and cells. Current Protocols in Immunology 3, 10.11.1–10.11.14
Semenov, M.A., Shewry, P.R. (2011). Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep. 1:66. DOI: 10.1038/srep00066. PMID: 22355585; PMCID: PMC3216553.
Sharma, D., Singh, R., Tiwari, R., Kumar, R., Gupta, V. (2019). Wheat Responses and Tolerance to Terminal Heat Stress: A Review. In: M Hasanuzzaman, K Nahar, M A Hossain (eds), Wheat Production in Changing Environments: Responses, Adaptation and Tolerance, 149-17
Sharma, Davinder, Mamrutha, H.M., Gupta, V.K., Tiwari, R., Singh, R. (2015). Association of SSCP variants of HSP genes with physiological and yield traits under Heat stress in wheat. Res Crop. 16(1):139-146.
Sinclair T. R., Hammer G. L., Van Oosterom E. J. (2005). Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 32 945–952. 10.1071/FP05047 [DOI] [PubMed] [Google Scholar]
Wang, C., Brunner, I., Zong, S., and Li, M.H. (2019). The Dynamics of Living and Dead Fine Roots of Forest Biomes Across the Northern Hemisphere. Forests 10(11):953, DOI: 10.3390/f10110953
Wang, X., Xin, C., Cai, J., Zhou, Q., Dai, T., Cao, W., Jiang, D. (2016). Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat, Frontiers in Plant Science 7(e9514), DOI: 10.3389/fpls.2016.00501, License CC BY 4.0
Wang, X., Cai, J., Liu, F., Da, T., Cao, W., Wollenweber, B., Jiang, D. (2014). Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry, Volume 74, Pages 185-192.
Xiaofei Wei, Sha Guo, Baoluo Ma, Jairo A. Palta, Yongqing Ma, Pufang Li. (2024). Wheat yield improvement is associated with altered root systems during cultivar replacement. European Journal of Agronomy, Volume 154,127101, ISSN 1161-0301, https://doi.org/10.1016/j.eja.2024.127101.
Yemm, E.W., Willis, A.J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 57(3):508-14. DOI: 10.1042/bj0570508. PMID: 13181867; PMCID: PMC1269789.
Zhao, K., Tao, Y., Liu, M., Yang, D., Zhu, M., Ding, J., Zhu, X., Guo, W., Zhou, G., Li, C. (2022). Does temporary heat stress or low temperature stress similarly affect yield, starch, and protein of winter wheat grain during grain filling? Journal of Cereal Science, Volume 103, 103408, ISSN 0733-5210, https://doi.org/10.1016/j.jcs.2021.10340