Have a personal or library account? Click to login
Prerequisites to Design a Collision Free Trajectory in a 3D Dynamic Environment for an UAV Cover
By: Sofia Huştiu  
Open Access
|Mar 2022

References

  1. Duan H., Qiao P., Pigeon-Inspired Optimization: A New Swarm Intelligence Optimizer for Air Robot Path Planning, Intelligent Computing and Cybernetics, 2014, 7, 24-37.10.1108/IJICC-02-2014-0005
  2. Fang Z., Luan C., Sun Z., A 2d Voronoi-Based Random Tree for Path Planning in Complicated 3d Environments, Intelligent Autonomous Systems, 2017, 31, 433-445.10.1007/978-3-319-48036-7_31
  3. Ge F., Li K., Han Y., Xu W., Wang Y., Path Planning for Oilfield Inspection in a Three-Dimensional Dynamic Environment with Moving Obstacles Based on Improved Pigeon-Inspired Optimization Algorithm, Applied Intelligence, 1-18 (2020).10.1007/s10489-020-01650-2
  4. Gheorghiță D., Vîntu I., Mirea L., Brăescu C. Quadcopter Control System, 19th International Conference on System Theory, Control and Computing (ICSTCC), 2015, 421-426.10.1109/ICSTCC.2015.7321330
  5. Goel U., Varshney S., Jain A., Maheshwari S., Shukla A., Three Dimensional Path Planning for UAVs in Dynamic Environment Using Glow-Worm Swarm Optimization, Procedia Computer Science, 2018, 133, 230-239.10.1016/j.procs.2018.07.028
  6. Greiff M., Modelling and Control of the Crazyflie Quadrotor for Aggressive and Autonomous Flight by Optical Flow Driven State Estimation, 2017, MSc. Thesis, Lund University.
  7. Huștiu S., Lupașcu M., Popescu Ș., Burlacu A., Kloetzer M., Stable Hovering Architecture for Nanoquadcopter Applications in Indoor Environments, 22nd International Conference on System Theory, Control and Computing (ICSTCC), IEEE, 2018, 659-663.10.1109/ICSTCC.2018.8540759
  8. Huștiu S., Kloetzer M., Burlacu A., Collision Free Path Planning for Unmanned Aerial Vehicles in Environments with Dynamic Obstacles, 24th International Conference on System Theory, Control and Computing (ICSTCC), IEEE, 2020, 520-525.10.1109/ICSTCC50638.2020.9259702
  9. Liu L., Shi R., Li S., Wu J., Path Planning for UAVs Based on Improved Artificial Potential Field Mwthoid Through Changing the Repulsive Potential Function, IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 2016, 2011-2015.
  10. Lupașcu M., Huștiu S., Burlacu A., Kloetzer M., Path Planning for Autonoumous Drones Using 3d Rectangular Cuboid Decomposition, 23rd International Conference on System Theory, Control and Computing (ICSTCC), IEEE, 2019, 119-124.10.1109/ICSTCC.2019.8886091
  11. Mahulea C., Kloetzer M., Robot Planning Based on Boolean Specifications Using Petri Net Models, IEEE Transactions on Automatic Control, 2018, 63, 2218-2225.10.1109/TAC.2017.2760249
  12. Paranjape A., Meier K., Shi X., Chung S.-J, Hutchinson S., Motion Primitive and 3D Path Planning for Fast Flight Though a Forest, The International Journal of Robotics Research, 2015, 34, 357-377.10.1177/0278364914558017
  13. Pastravanu O., Matcovschi MH., Mahulea C., Petri Net Toolbox – Teaching Discrete Event Systems Under MATLAB, Advances in Automatic Control, 2004, 247-255.10.1007/978-1-4419-9184-3_17
  14. Tagay A., Omar A., Ali M.H., Development of Control Algorithm for a Quadcopter, Procedia Computer Science. 2021, 179, 242-251.10.1016/j.procs.2021.01.003
  15. Yao P., Wang H., Su Z., Hybrid UAV Path Planning Based on Interfered Fluid Dynamical System and Improved RRT, 41st Annual Conference of the IEEE Industrial Electronics Society (IECON), 2015, 829-834.10.1109/IECON.2015.7392202
DOI: https://doi.org/10.2478/bipie-2021-0012 | Journal eISSN: 2537-2726 | Journal ISSN: 1223-8139
Language: English
Page range: 65 - 78
Submitted on: Oct 11, 2021
Accepted on: Dec 5, 2021
Published on: Mar 12, 2022
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Sofia Huştiu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.