References
- Lamarck JB. Zoological philosophy: an exposition with regard to the natural history of animals. Chicago: University of Chicago Press; 1984.
- Lewontin R. What is evolutionary theory. 2003. Santa Fe Institute. Available from:
https://www.youtube.com/watch?v=n6W_FzjaKlw . (Accessed date: November 11, 2003) - Newman S. Remembering Richard Lewontin. Biopolitical Times, Center for Genetics and Society; 2021. Available from:
https://www.geneticsandsociety.org/biopolitical-times/remembering-richard-lewontin-1929-2021 . (Accessed date: July 6, 2001) - Simpson GG. Tempo and mode in evolution. New York: Columbia University Press; 1944.
- Bickel D. Testing hypotheses of molecular evolution. Phylogenetic trees and molecular evolution. Springer briefs in systems biology. Cham: Springer; 2022. p. 71–77.
- 黄石 and 朱作斌, 系统生物学与进化理论. 系统生物学, ed. 朱作斌, 张潇, and 王亮. 2022, 南京: 东南大学出版社.
- Zuckerkandl E, Pauling L. Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B. (eds.) Horizons in biochemistry. New York: Academic Press; 1962. p.189–225.
- Margoliash E. Primary structure and evolution of cytochrome C. Proceedings of the National academy of Sciences of the United States of America. 1963;50: 672–679. doi: 10.1073/pnas.50.4.672
- Doolittle RF, Blombaeck B. Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature. 1964;202: 147–152. doi: 10.1038/202147a0
- Kumar S. Molecular clocks: four decades of evolution. Nature Reviews Genetics. 2005;6(8): 654–662. doi: 10.1038/nrg1659
- Luo D, Huang S. The genetic equidistance phenomenon at the proteomic level. Genomics. 2016;108(1): 25–30. doi: 10.1016/j.ygeno.2016.03.002
- Yuan D, Huang S. Genetic equidistance at nucleotide level. Genomics. 2017;109: 192–195. doi: 10.1016/j.ygeno.2017.03.002
- Copley RR, Schultz J, Ponting CP, Bork P. Protein families in multicellular organisms. Current Opinion in Structural Biology. 1999;9: 408–415. doi: 10.1016/S0959-440X(99)80055-4
- Denton M. Evolution: a theory in crisis. Chevy Chase, MD: Adler & Adler; 1985.
- Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B, et al. Evolution of the germline mutation rate across vertebrates. Nature. 2023;615(7951): 285–291. doi: 10.1038/s41586-023-05752-y
- Brownstein CD, MacGuigan DJ, Kim D, Orr O, Yang L, David SR, et al. The genomic signatures of evolutionary stasis. Evolution; International Journal of Organic Evolution. 2024;78(5): 821–834. doi: 10.1093/evolut/qpae028
- Mello B, Schrago CG. Modeling substitution rate evolution across lineages and relaxing the molecular clock. Genome Biology and Evolution. 2024;16(9): evae199. doi: 10.1093/gbe/evae199
- Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biology. 2006;4(5): e88. doi: 10.1371/journal.pbio.0040088
- Van Valen L. Molecular evolution as predicted by natural selection. Journal of Molecular Evolution. 1974;3: 89–101. doi: 10.1007/BF01796554
- Clarke B. Darwinian evolution of proteins. Science. 1970;168(934): 1009–1011. doi: 10.1126/science.168.3934.1009
- Richmond RC. Non-Darwinian evolution: a critique. Nature. 1970;225(5237): 1025–1028. doi: 10.1038/2251025a0
- Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217(5129): 624–626. doi: 10.1038/217624a0
- Kimura M, Ohta T. On the rate of molecular evolution. Journal of Molecular Evolution. 1971;1: 1–17. doi: 10.1007/BF01659390
- King JL, Jukes TH. Non-Darwinian evolution. Science. 1969;164: 788–798. doi: 10.1126/science.164.3881.788
- Ayala FJ. Molecular clock mirages. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 1999;21(1): 71–75. doi: 10.1002/(SICI)1521-1878(199901)21:1<;71::AID-BIES9>3.0.CO;2-B
- Pulquerio MJ, Nichols RA. Dates from the molecular clock: how wrong can we be? Trends in Ecology & Evolution. 2007;22(4): 180–184. doi: 10.1016/j.tree.2006.11.013
- Kimura M, Ohta T. Protein polymorphism as a phase of molecular evolution. Nature. 1971;229: 467–479. doi: 10.1038/229467a0
- Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1983.
- Leigh EG Jr. Neutral theory: a historical perspective. Journal of Evolutionary Biology. 2007;20(6): 2075–2091. doi: 10.1111/j.1420-9101.2007.01410.x
- Fisher RA. The genetical theory of natural selection. Oxford, UK: Oxford University Press; 1930.
- Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics. 1932;1: 356–366.
- Haldane JBS. The cost of natural selection. Journal of Genetics. 1957;55: 511–524. doi: 10.1007/BF02984069
- Sueoka N. On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National academy of Sciences of the United States of America. 1962;48: 582–592. doi: 10.1073/pnas.48.4.582
- Freese E. On the evolution of the base composition of DNA. Journal of Theoretical Biology. 1962;3(1): 82–101. doi: 10.1016/S0022-5193(62)80005-8
- Lewontin RC. The genetic basis of evolutionary change. New York and London: Columbia University Press; 1974.
- Lewontin RC, Hubby JL. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966;54(2): 595–609. doi: 10.1093/genetics/54.2.595
- Dietrich MR. The origins of the neutral theory of molecular evolution. Journal of the History of Biology. 1994;27(1): 21–59. doi: 10.1007/BF01058626
- Suarez E, Barahona A. The experimental roots of the neutral theory of molecular evolution. History and Philosophy of the Life Sciences. 1996;18: 55–81.
- Palazzo AF, Gregory TR. The case for junk DNA. Plos Genetics. 2014;10(5): e1004351. doi: 10.1371/journal.pgen.1004351
- Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. Plos Genetics. 2014;10(7): e1004525. doi: 10.1371/journal.pgen.1004525
- Doolittle WF, Brunet TDP. On causal roles and selected effects: our genome is mostly junk. BMC Biology. 2017;15(1): 116. doi: 10.1186/s12915-017-0460-9
- Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Genetics. 1964;49: 725–738. doi: 10.1093/genetics/49.4.725
- Demeulemeester J, Dentro SC, Gerstung M, Van Loo P. Biallelic mutations in cancer genomes reveal local mutational determinants. Nature Genetics. 2022;54(2): 128–133. doi: 10.1038/s41588-021-01005-8
- Harpak A, Bhaskar A, Pritchard JK. Mutation rate variation is a primary determinant of the distribution of allele frequencies in humans. Plos Genetics. 2016;12(12): e1006489. doi: 10.1371/journal.pgen.1006489
- Porubsky D, Dashnow H, Sasani TA, Logsdon GA, Hallast P, Noyes MD, et al. A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree. bioRxiv. 2024: 2024.08.05.606142. doi: 10.1101/2024.08.05.606142
- Lynch M, Wei W, Ye Z, Pfrender M. The genome-wide signature of short-term temporal selection. Proceedings of the National academy of Sciences of the United States of America. 2024;121(28): e2307107121. doi: 10.1073/pnas.2307107121
- Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Scoring the collective effects of SNPs: association of minor alleles with complex traits in model organisms. Science China Life Sciences. 2014;57(9): 876–888. doi: 10.1007/s11427-014-4704-4
- Zhu Z, Yuan D, Luo D, Lu X, Huang S. Enrichment of minor alleles of common SNPs and improved risk prediction for Parkinson's disease. Plos One. 2015;10(7): e0133421. doi: 10.1371/journal.pone.0133421
- Zhu Z, Man X, Xia M, Huang Y, Yuan D, Huang S. Collective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeast. Genomics. 2015;106(1): 23–29. doi: 10.1016/j.ygeno.2015.04.002
- Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Minor alleles of common SNPs quantitatively affect traits/diseases and are under both positive and negative selection. arXiv. 2012;1209.2911. doi: 10.1007/s11427-014-4704-4
- Zhu Z, Lu Q, Wang J, Huang S. Collective effects of common SNPs in foraging decisions in Caenorhabditis elegans and an integrative method of identification of candidate genes. Scientific Reports. 2015;5: 16904. doi: 10.1038/srep16904
- Kimura M, Ohta T. On some principles governing molecular evolution. Proceedings of the National academy of Sciences of the United States of America. 1974;71(7): 2848–2852. doi: 10.1073/pnas.71.7.2848
- Quinodoz SA, Jachowicz JW, Bhat P, Ollikainen N, Banerjee AK, Goronzy IN, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184(23): 5775–5790.e30. doi: 10.1016/j.cell.2021.10.014
- Basu A, Bobrovnikov DG, Cieza B, Arcon JP, Qureshi Z, Orozco M, et al. Deciphering the mechanical code of the genome and epigenome. Nature Structural & Molecular Biology. 2022;29(12): 1178–1187. doi: 10.1038/s41594-022-00877-6
- Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, Xie J, et al. Position-dependent function of human sequence-specific transcription factors. Nature. 2024;631(8022): 891–898. doi: 10.1038/s41586-024-07662-z
- Eder M, Moene CJI, Dauban L, Leemans C, Steensel BV. Functional maps of a genomic locus reveal confinement of an Enhancer by its target gene. bioRxiv. 2024. doi: 10.1101/2024.08.26.609360
- Du AY, Chobirko JD, Zhuo X, Feschotte C, Wang T. Regulatory transposable elements in the encyclopedia of DNA elements. Nature Communications. 2024;15(1): 7594. doi: 10.1038/s41467-024-51921-6
- Kimura M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetical Research. 1968;11(3): 247–269. doi: 10.1017/S0016672300011459
- Shen X, Song S, Li C, Zhang J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 2022;606(7915): 725–731. doi: 10.1038/s41586-022-04823-w
- Lu J, Wu CI. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proceedings of the National academy of Sciences of the United States of America. 2005;102(11): 4063–4067. doi: 10.1073/pnas.0500436102
- Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, et al. Synthetic genomes unveil the effects of synonymous recoding. bioRxiv. 2024: 2024.06.16.599206. doi: 10.1101/2024.06.16.599206
- Rodriguez A, Diehl JD, Wright GS, Bonar CD, Lundgren TJ, Moss MJ, et al. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proceedings of the National academy of Sciences of the United States of America. 2024;121(36): e2405510121. doi: 10.1073/pnas.2405510121
- Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L, Venkat A, et al. Revisiting an old riddle: what determines genetic diversity levels within species? Plos Biology. 2012;10(9): e1001388. doi: 10.1371/journal.pbio.1001388
- Buffalo V. Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin's paradox. eLife. 2021;10: e67509. doi: 10.7554/eLife.67509
- Kern AD, Hahn MW. The neutral theory in light of natural selection. Molecular Biology and Evolution. 2018;35(6): 1366–1371. doi: 10.1093/molbev/msy092
- Kreitman M. The neutral theory is dead. Long live the neutral theory. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 1996;18(8): 678–683. discussion 683. doi: 10.1002/bies.950180812
- Cann RL, Stoneking AC, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987;325: 31–36. doi: 10.1038/325031a0
- Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution. 1985;39(4): 783–791. doi: 10.2307/2408678
- Huang S. The genetic equidistance result of molecular evolution is independent of mutation rates. Journal of Computer Science and Systems Biology. 2008;1: 092–102. doi: 10.4172/jcsb.1000009
- Avise JC. Molecular markers, natural history and evolution. New York, NY: Springer; 1994.
- Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
- Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973;246(5428): 96–98. doi: 10.1038/246096a0
- Huang S. Histone methyltransferases, diet nutrients, and tumor suppressors. Nature Reviews Cancer. 2002;2: 469–476. doi: 10.1038/nrc819
- Huang S. Histone methylation and the initiation of cancer. In: Tollefsbol T. (ed.) Cancer epigenetics. New York: CRC Press; 2008. p. 109–158.
- Huang S. Inverse relationship between genetic diversity and epigenetic complexity. Nature Precedings. 2009. doi: 10.1038/npre.2009.1751.2
- Huang S. The overlap feature of the genetic equidistance result, a fundamental biological phenomenon overlooked for nearly half of a century. Biological Theory. 2010;5: 40–52. doi: 10.1162/BIOT_a_00021
- Santoni G, Astori S, Leleu M, Glauser L, Zamora SA, Schioppa M, et al. Chromatin plasticity predetermines neuronal eligibility for memory trace formation. Science. 2024;385(6707): eadg9982. doi: 10.1126/science.adg9982
- Aquadro CF. Why is the genome variable? Insights from Drosophila. Trends in Genetics. 1992;8(10): 355–362. doi: 10.1016/0168-9525(92)90281-8
- Lewontin RC. Twenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics. 1991;128(4): 657–662. doi: 10.1093/genetics/128.4.657
- Bateson W. Materials for the study of variation treated with especial regard to discontinuity in the origin of species. London: Macmillan; 1894.
- Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America. 1979;76: 5269–5273. doi: 10.1073/pnas.76.10.5269
- Steux C, Szpiech ZA. The maintenance of deleterious variation in wild Chinese rhesus macaques. Genome Biology and Evolution. 2024;16(6): evae115. doi: 10.1093/gbe/evae115
- Ellegren H, Galtier N. Determinants of genetic diversity. Nature Reviews Genetics. 2016;17(7): 422–433. doi: 10.1038/nrg.2016.58
- Nevo E. Genetic diversity. In: Levin SA. (ed.) Encyclopedia of biodiversity. Amsterdam: Elsevier Inc; 2001. p. 662–677. doi: 10.1016/B978-0-12-384719-5.00065-4
- Yang J, Lusk R, Li WH. Organismal complexity, protein complexity, and gene duplicability. Proceedings of the National academy of Sciences of the United States of America. 2003;100(26): 15661–15665. doi: 10.1073/pnas.2536672100
- Levine M, Tjian R. Transcription regulation and animal diversity. Nature. 2003;424(6945): 147–151. doi: 10.1038/nature01763
- Vinogradov AE, Anatskaya OV. Organismal complexity, cell differentiation and gene expression: human over mouse. Nucleic Acids Research. 2007;35(19): 6350–6356. doi: 10.1093/nar/gkm723
- Bonner JT. Perspective: the size-complexity rule. Evolution; International Journal of Organic Evolution. 2004;58: 1883–1890. doi: 10.1111/j.0014-3820.2004.tb00476.x
- Carroll SB. Chance and necessity: the evolution of morphological complexity and diversity. Nature. 2001;409(6823): 1102–1109. doi: 10.1038/35059227
- McShea DW. Metazoan complexity and evolution: is there a trend? Evolution; International Journal of Organic Evolution. 1996;50: 477–492. doi: 10.2307/2410824
- Bonner JT. The evolution of complexity. Princeton, NJ: Princeton University Press; 1988.
- Vogel C, Chothia C. Protein family expansions and biological complexity. PLoS Computational Biology. 2006;2(5): e48. doi: 10.1371/journal.pcbi.0020048
- Remy JJ. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Current Biology: CB. 2010;20(20): R877–R878. doi: 10.1016/j.cub.2010.08.013
- Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727): 1466–1469. doi: 10.1126/science.1108190
- Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. New England Journal of Medicine. 2007;356(7): 697–705. doi: 10.1056/NEJMoa064522
- Cropley JE, Suter CM, Beckman KB, Martin DI. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proceedings of the National academy of Sciences of the United States of America. 2006;103(46): 17308–17312. doi: 10.1073/pnas.0607090103
- Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nature Genetics. 2016;48(5): 497–499. doi: 10.1038/ng.3527
- Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews Genetics. 2022;23(6): 325–341. doi: 10.1038/s41576-021-00438-5
- Yu J, Zhang Y, Fang Y, Paulo JA, Yaghoubi D, Hua X, et al. A replisome-associated histone H3-H4 chaperone required for epigenetic inheritance. Cell. 2024;187: 5010.e–5028.e. doi: 10.1016/j.cell.2024.07.006
- Hu T, Long M, Yuan D, Zhu Z, Huang Y, Huang S. The genetic equidistance result, misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later. Science China Life Sciences. 2013;56: 254–261. doi: 10.1007/s11427-013-4452-x
- Huang S. New thoughts on an old riddle: what determines genetic diversity within and between species? Genomics. 2016;108(1): 3–10. doi: 10.1016/j.ygeno.2016.01.008
- Huang S. The maximum genetic diversity theory of molecular evolution. Communications in Information and Systems. 2023;23: 359–392. doi: 10.4310/CIS.2023.v23.n4.a1
- Zhu Z, Han C, Huang S. New insights shed light on the enigma of genetic diversity and species complexity. Science China Life Sciences. 2024;67: 2774–2776. doi: 10.1007/s11427-023-2610-2
- Orr HA. Adaptation and the cost of complexity. Evolution; International Journal of Organic Evolution. 2000;54(1): 13–20. doi: 10.1111/j.0014-3820.2000.tb00002.x
- Parts L, Batté A, Lopes M, Yuen MW, Laver M, San Luis BJ, et al. Natural variants suppress mutations in hundreds of essential genes. Molecular Systems Biology. 2021;17(5): e10138. doi: 10.15252/msb.202010138
- Gould SJ, Eldredge N. Punctuated equilibrium comes of age. Nature. 1993;366(6452): 223–227. doi: 10.1038/366223a0
- Rudman SM, Greenblum SI, Rajpurohit S, Betancourt NJ, Hanna J, Tilk S, et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science. 2022;375(6586): eabj7484. doi: 10.1126/science.abj7484
- Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336(6085): 1157–1160. doi: 10.1126/science.1217405
- Wang M, Wang D, Yu J, Huang S. Enrichment in conservative amino acid changes among fixed and standing missense variations in slowly evolving proteins. PeerJ. 2020;8: e9983. doi: 10.7717/peerj.9983
- Bergsten J. A review of long-branch attraction. Cladistics: the International Journal of the Willi Hennig Society. 2005;21: 163–193. doi: 10.1111/j.1096-0031.2005.00059.x
- Huang S. Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers. Science China Life Sciences. 2012;55: 709–725. doi: 10.1007/s11427-012-4350-7
- Bickel D. A generalization of null hypothesis significance testing with applications to replication failures, molecular evolution models, and bounded parameter spaces. Zenodo. 2021. doi: 10.5281/zenodo.5123388
- Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, et al. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science. 2025;387(6737): 1001–1007. doi: 10.1126/science.ads0215
- Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, et al. Structurally divergent and recurrently mutated regions of primate genomes. Cell. 2024;187(6): 1547–1562.e13. doi: 10.1016/j.cell.2024.01.052
- Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, et al. The landscape of tolerated genetic variation in humans and primates. Science (New York, N.Y.). 2023;380(6648): eabn8153. doi: 10.1126/science.abn8197
- Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science (New York, N.Y.). 2007;316(5822): 222–234. doi: 10.1126/science.1139247
- Kuiken C, Korber B, Shafer RW. HIV sequence databases. AIDS Reviews. 2003;5(1): 52–61.
- Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055): 69–87. doi: 10.1038/nature04072
- Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, et al. Comparative genomics of macaques and integrated insights into genetic variation and population history. bioRxiv. 2024: 2024.04.07.588379. doi: 10.1101/2024.04.07.588379
- Orkin JD, Kuderna LFK, Hermosilla-Albala N, Fontsere C, Aylward ML, Janiak MC, et al. Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar. Nature Ecology and Evolution. 2025;9(1): 42–56. doi: 10.1038/s41559-024-02596-1
- Oberstaller J, Xu S, Naskar D, Zhang M, Wang C, Gibbons J, et al. Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites. Science. 2025;387(6734): eadq7347. doi: 10.1126/science.adq7347
- Camellato BR, Brosh R, Ashe HJ, Maurano MT, Boeke JD. Synthetic reversed sequences reveal default genomic states. Nature. 2024;628(8007): 373–380. doi: 10.1038/s41586-024-07128-2
- Wang M, Huang S. The collective effects of genetic variants and complex traits. Journal of Human Genetics. 2023;68: 255–262. doi: 10.1038/s10038-022-01105-1
- Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, et al. The impact of rare protein coding genetic variation on adult cognitive function. Nature Genetics. 2023;55(6): 927–938. doi: 10.1038/s41588-023-01398-8
- Ganna A, Genovese G, Howrigan DP, Byrnes A, Kurki M, Zekavat SM, et al. Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nature Neuroscience. 2016;19(12): 1563–1565. doi: 10.1038/nn.4404
- Ganna A, Satterstrom FK, Zekavat SM, Das I, Kurki MI, Churchhouse C, et al. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. American Journal of Human Genetics. 2018;102(6): 1204–1211. doi: 10.1016/j.ajhg.2018.05.002
- Sha Z, Sun KY, Jung B, Barzilay R, Moore TM, Almasy L, et al. The copy number variant architecture of psy-chopathology and cognitive development in the ABCD® study. medRxiv. 2024: 2024.05.14.24307376. doi: 10.1101/2024.05.14.24307376
- Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, et al. Genetic architecture of the structural connectome. Nature Communications. 2024;15(1): 1962. doi: 10.1038/s41467-024-46023-2
- Zhang S, Xu N, Fu L, Yang X, Ma K, Li Y, et al. Integrated analysis of the complete sequence of a macaque genome. Nature. 2025. doi: 10.1038/s41586-025-08596-w
- Joly M, Micheletta J, De Marco A, Langermans JA, Sterck EHM, Waller BM. Comparing physical and social cognitive skills in macaque species with different degrees of social tolerance. Proceedings. Biological Sciences/the Royal Society. 2017;284(1862): 20162738. doi: 10.1098/rspb.2016.2738
- Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, et al. A global catalog of whole-genome diversity from 233 primate species. Science. 2023;380(6648): 906–913. doi: 10.1126/science.abn7829
- de Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science. 2016;354(6311): 477–481. doi: 10.1126/science.aag2602
- Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324(5930): 1035–1044. doi: 10.1126/science.1172257
- Lynn R. Race differences in intelligence. Augusta, GA: Washington Summit Publishers; 2006.
- Nédélec Y, Sanz J, Baharian G, Szpiech ZA, Pacis A, Dumaine A, et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell. 2016;167(3): 657–669.e21. doi: 10.1016/j.cell.2016.09.025
- Quach H, Rotival M, Pothlichet J, Loh YE, Dannemann M, Zidane N, et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell. 2016;167(3): 643–656.e17. doi: 10.1016/j.cell.2016.09.024
- Lei X, Yuan D, Zhu Z, Huang S. Collective effects of common SNPs and risk prediction in lung cancer. Heredity. 2018;121: 537–547. doi: 10.1038/s41437-018-0063-4
- He P, Lei X, Yuan D, Zhu Z, Huang S. Accumulation of minor alleles and risk prediction in schizophrenia. Scientific Reports. 2017;7(1): 11661. doi: 10.1038/s41598-017-12104-0
- Sanjak JS, Sidorenko J, Robinson MR, Thornton KR, Visscher PM. Evidence of directional and stabilizing selection in contemporary humans. Proceedings of the National academy of Sciences of the United States of America. 2018;115(1): 151–156. doi: 10.1073/pnas.1707227114
- Amos W, Elhaik E. Unexpected D-tour ahead: why the D-statistic, applied to humans, measures mutation rate variation not Neanderthal introgression. bioRxiv. 2025. Available from:
https://www.biorxiv.org/content/10.1101/2024.12.31.630954v2 . doi: 10.1101/2024.12.31.630954 (Accessed date: December 31, 2024) - Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, et al. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science. 2023;381(6664): eadd1250. doi: 10.1126/science.add1250
- ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414): 57–74. doi: 10.1038/nature11247
- Mattick JS. A Kuhnian revolution in molecular biology: most genes in complex organisms express regulatory RNAs. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 2023;45(9): e2300080. doi: 10.1002/bies.202300080
- Meneu L, Chapard C, Serizay J, Westbrook A, Routhier E, Ruault M, et al. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science. 2025;387(6734): eadm9466. doi: 10.1126/science.adm9466
- Li A, Evans DS, Cummings S, Ideker T. Somatic mutation as an explanation for epigenetic aging. Nature Aging. 2025. doi: 10.1038/s43587-024-00794-x
- Lake NJ, Ma K, Liu W, Battle SL, Laricchia KM, Tiao G, et al. Quantifying constraint in the human mitochondrial genome. Nature. 2024;635: 390–397. doi: 10.1038/s41586-024-08048-x
- Couce A, Limdi A, Magnan M, Owen SV, Herren CM, Lenski RE, et al. Changing fitness effects of mutations through long-term bacterial evolution. Science. 2024;383(6681): eadd1417. doi: 10.1126/science.add1417
- Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional structure. Cell. 2009;138(4): 774–786. doi: 10.1016/j.cell.2009.07.038
- Jeong H, Dishuck PC, Yoo D, Harvey WT, Munson KM, Lewis AP, et al. Structural polymorphism and diversity of human segmental duplications. Nature Genetics. 2025;57(2): 390–401. doi: 10.1038/s41588-024-02051-8
- Simpson KJ, Mian S, Forrestel EJ, Hackel J, Morton JA, Leitch AR, et al. Bigger genomes provide environment-dependent growth benefits in grasses. The New Phytologist. 2024;244(5): 2049–2061. doi: 10.1111/nph.20150
- Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, et al. The mutational landscape of human somatic and germline cells. Nature. 2021;597(7876): 381–386. doi: 10.1038/s41586-021-03822-7
- Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, et al. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. Nature Aging. 2024;4(9): 1211–1230. doi: 10.1038/s43587-024-00672-6
- Zeller E, Timmermann A, Yun KS, Raia P, Stein K, Ruan J. Human adaptation to diverse biomes over the past 3 million years. Science. 2023;380(6645): 604–608. doi: 10.1126/science.abq1288
- Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, Kyriazis CC, et al. Genetic diversity loss in the Anthropocene. Science. 2022;377(6613): 1431–1435. doi: 10.1126/science.abn5642
- Gross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, et al. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature. 2024;632(8026): 808–814. doi: 10.1038/s41586-024-07731-3
- Jenkin F. The origin of species. The North British Review. 1867;46: 277–318.
- Goldschmidt R. The material basis of evolution. New Haven, CT: Yale University Press; 1940.
- Forsdyke DR. Evolutionary bioinformatics. New York: Springer; 2011.
- Heng HH. Genome chaos: rethinking genetics, evolution, and molecular medicine. Cambridge, MA, USA: Academic Press Elsevier; 2019.
- Zhang Y. The genetic equidistance and maximum genetic diversity hypothesis: smoke and mirrors? bioRxiv. 2023. doi: 10.1101/2023.02.14.528494
- Huang S. A rebuttal to Zhang's critique of the genetic equidistance phenomenon and maximum genetic diversity hypothesis. Zenodo. 2025. doi: 10.5281/zenodo.14927073
- Yuan D, Lei X, Gui Y, Zhu Z, Wang M, Zhang Y, et al. Modern human origins: multiregional evolution of autosomes and East Asia origin of Y and mtDNA. bioRxiv. 2017. doi: 10.1101/101410
- Huang S. Examining models of modern human origins through the analysis of 43 fully sequenced human Y chromosomes, Communications in Information and Systems, in press. bioRxiv. 2023. doi: 10.1101/2023.11.09.566475