Lewontin R. What is evolutionary theory. 2003. Santa Fe Institute. Available from: https://www.youtube.com/watch?v=n6W_FzjaKlw. (Accessed date: November 11, 2003)
Newman S. Remembering Richard Lewontin. Biopolitical Times, Center for Genetics and Society; 2021. Available from: https://www.geneticsandsociety.org/biopolitical-times/remembering-richard-lewontin-1929-2021. (Accessed date: July 6, 2001)
Bickel D. Testing hypotheses of molecular evolution. Phylogenetic trees and molecular evolution. Springer briefs in systems biology. Cham: Springer; 2022. p. 71–77.
Zuckerkandl E, Pauling L. Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B. (eds.) Horizons in biochemistry. New York: Academic Press; 1962. p.189–225.
Margoliash E. Primary structure and evolution of cytochrome C. Proceedings of the National academy of Sciences of the United States of America. 1963;50: 672–679. doi: 10.1073/pnas.50.4.672
Doolittle RF, Blombaeck B. Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature. 1964;202: 147–152. doi: 10.1038/202147a0
Copley RR, Schultz J, Ponting CP, Bork P. Protein families in multicellular organisms. Current Opinion in Structural Biology. 1999;9: 408–415. doi: 10.1016/S0959-440X(99)80055-4
Brownstein CD, MacGuigan DJ, Kim D, Orr O, Yang L, David SR, et al. The genomic signatures of evolutionary stasis. Evolution; International Journal of Organic Evolution. 2024;78(5): 821–834. doi: 10.1093/evolut/qpae028
Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biology. 2006;4(5): e88. doi: 10.1371/journal.pbio.0040088
Pulquerio MJ, Nichols RA. Dates from the molecular clock: how wrong can we be? Trends in Ecology & Evolution. 2007;22(4): 180–184. doi: 10.1016/j.tree.2006.11.013
Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics. 1932;1: 356–366.
Sueoka N. On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National academy of Sciences of the United States of America. 1962;48: 582–592. doi: 10.1073/pnas.48.4.582
Lewontin RC, Hubby JL. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966;54(2): 595–609. doi: 10.1093/genetics/54.2.595
Suarez E, Barahona A. The experimental roots of the neutral theory of molecular evolution. History and Philosophy of the Life Sciences. 1996;18: 55–81.
Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. Plos Genetics. 2014;10(7): e1004525. doi: 10.1371/journal.pgen.1004525
Demeulemeester J, Dentro SC, Gerstung M, Van Loo P. Biallelic mutations in cancer genomes reveal local mutational determinants. Nature Genetics. 2022;54(2): 128–133. doi: 10.1038/s41588-021-01005-8
Harpak A, Bhaskar A, Pritchard JK. Mutation rate variation is a primary determinant of the distribution of allele frequencies in humans. Plos Genetics. 2016;12(12): e1006489. doi: 10.1371/journal.pgen.1006489
Porubsky D, Dashnow H, Sasani TA, Logsdon GA, Hallast P, Noyes MD, et al. A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree. bioRxiv. 2024: 2024.08.05.606142. doi: 10.1101/2024.08.05.606142
Lynch M, Wei W, Ye Z, Pfrender M. The genome-wide signature of short-term temporal selection. Proceedings of the National academy of Sciences of the United States of America. 2024;121(28): e2307107121. doi: 10.1073/pnas.2307107121
Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Scoring the collective effects of SNPs: association of minor alleles with complex traits in model organisms. Science China Life Sciences. 2014;57(9): 876–888. doi: 10.1007/s11427-014-4704-4
Zhu Z, Yuan D, Luo D, Lu X, Huang S. Enrichment of minor alleles of common SNPs and improved risk prediction for Parkinson's disease. Plos One. 2015;10(7): e0133421. doi: 10.1371/journal.pone.0133421
Zhu Z, Man X, Xia M, Huang Y, Yuan D, Huang S. Collective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeast. Genomics. 2015;106(1): 23–29. doi: 10.1016/j.ygeno.2015.04.002
Yuan D, Zhu Z, Tan X, Liang J, Zeng C, Zhang J, et al. Minor alleles of common SNPs quantitatively affect traits/diseases and are under both positive and negative selection. arXiv. 2012;1209.2911. doi: 10.1007/s11427-014-4704-4
Zhu Z, Lu Q, Wang J, Huang S. Collective effects of common SNPs in foraging decisions in Caenorhabditis elegans and an integrative method of identification of candidate genes. Scientific Reports. 2015;5: 16904. doi: 10.1038/srep16904
Kimura M, Ohta T. On some principles governing molecular evolution. Proceedings of the National academy of Sciences of the United States of America. 1974;71(7): 2848–2852. doi: 10.1073/pnas.71.7.2848
Quinodoz SA, Jachowicz JW, Bhat P, Ollikainen N, Banerjee AK, Goronzy IN, et al. RNA promotes the formation of spatial compartments in the nucleus. Cell. 2021;184(23): 5775–5790.e30. doi: 10.1016/j.cell.2021.10.014
Basu A, Bobrovnikov DG, Cieza B, Arcon JP, Qureshi Z, Orozco M, et al. Deciphering the mechanical code of the genome and epigenome. Nature Structural & Molecular Biology. 2022;29(12): 1178–1187. doi: 10.1038/s41594-022-00877-6
Eder M, Moene CJI, Dauban L, Leemans C, Steensel BV. Functional maps of a genomic locus reveal confinement of an Enhancer by its target gene. bioRxiv. 2024. doi: 10.1101/2024.08.26.609360
Du AY, Chobirko JD, Zhuo X, Feschotte C, Wang T. Regulatory transposable elements in the encyclopedia of DNA elements. Nature Communications. 2024;15(1): 7594. doi: 10.1038/s41467-024-51921-6
Kimura M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetical Research. 1968;11(3): 247–269. doi: 10.1017/S0016672300011459
Shen X, Song S, Li C, Zhang J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 2022;606(7915): 725–731. doi: 10.1038/s41586-022-04823-w
Lu J, Wu CI. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proceedings of the National academy of Sciences of the United States of America. 2005;102(11): 4063–4067. doi: 10.1073/pnas.0500436102
Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, et al. Synthetic genomes unveil the effects of synonymous recoding. bioRxiv. 2024: 2024.06.16.599206. doi: 10.1101/2024.06.16.599206
Rodriguez A, Diehl JD, Wright GS, Bonar CD, Lundgren TJ, Moss MJ, et al. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proceedings of the National academy of Sciences of the United States of America. 2024;121(36): e2405510121. doi: 10.1073/pnas.2405510121
Buffalo V. Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin's paradox. eLife. 2021;10: e67509. doi: 10.7554/eLife.67509
Kreitman M. The neutral theory is dead. Long live the neutral theory. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 1996;18(8): 678–683. discussion 683. doi: 10.1002/bies.950180812
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution. 1985;39(4): 783–791. doi: 10.2307/2408678
Huang S. The genetic equidistance result of molecular evolution is independent of mutation rates. Journal of Computer Science and Systems Biology. 2008;1: 092–102. doi: 10.4172/jcsb.1000009
Huang S. The overlap feature of the genetic equidistance result, a fundamental biological phenomenon overlooked for nearly half of a century. Biological Theory. 2010;5: 40–52. doi: 10.1162/BIOT_a_00021
Lewontin RC. Twenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics. 1991;128(4): 657–662. doi: 10.1093/genetics/128.4.657
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America. 1979;76: 5269–5273. doi: 10.1073/pnas.76.10.5269
Steux C, Szpiech ZA. The maintenance of deleterious variation in wild Chinese rhesus macaques. Genome Biology and Evolution. 2024;16(6): evae115. doi: 10.1093/gbe/evae115
Nevo E. Genetic diversity. In: Levin SA. (ed.) Encyclopedia of biodiversity. Amsterdam: Elsevier Inc; 2001. p. 662–677. doi: 10.1016/B978-0-12-384719-5.00065-4
Yang J, Lusk R, Li WH. Organismal complexity, protein complexity, and gene duplicability. Proceedings of the National academy of Sciences of the United States of America. 2003;100(26): 15661–15665. doi: 10.1073/pnas.2536672100
Bonner JT. Perspective: the size-complexity rule. Evolution; International Journal of Organic Evolution. 2004;58: 1883–1890. doi: 10.1111/j.0014-3820.2004.tb00476.x
McShea DW. Metazoan complexity and evolution: is there a trend? Evolution; International Journal of Organic Evolution. 1996;50: 477–492. doi: 10.2307/2410824
Remy JJ. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Current Biology: CB. 2010;20(20): R877–R878. doi: 10.1016/j.cub.2010.08.013
Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. New England Journal of Medicine. 2007;356(7): 697–705. doi: 10.1056/NEJMoa064522
Cropley JE, Suter CM, Beckman KB, Martin DI. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proceedings of the National academy of Sciences of the United States of America. 2006;103(46): 17308–17312. doi: 10.1073/pnas.0607090103
Yu J, Zhang Y, Fang Y, Paulo JA, Yaghoubi D, Hua X, et al. A replisome-associated histone H3-H4 chaperone required for epigenetic inheritance. Cell. 2024;187: 5010.e–5028.e. doi: 10.1016/j.cell.2024.07.006
Hu T, Long M, Yuan D, Zhu Z, Huang Y, Huang S. The genetic equidistance result, misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later. Science China Life Sciences. 2013;56: 254–261. doi: 10.1007/s11427-013-4452-x
Huang S. New thoughts on an old riddle: what determines genetic diversity within and between species? Genomics. 2016;108(1): 3–10. doi: 10.1016/j.ygeno.2016.01.008
Huang S. The maximum genetic diversity theory of molecular evolution. Communications in Information and Systems. 2023;23: 359–392. doi: 10.4310/CIS.2023.v23.n4.a1
Zhu Z, Han C, Huang S. New insights shed light on the enigma of genetic diversity and species complexity. Science China Life Sciences. 2024;67: 2774–2776. doi: 10.1007/s11427-023-2610-2
Orr HA. Adaptation and the cost of complexity. Evolution; International Journal of Organic Evolution. 2000;54(1): 13–20. doi: 10.1111/j.0014-3820.2000.tb00002.x
Parts L, Batté A, Lopes M, Yuen MW, Laver M, San Luis BJ, et al. Natural variants suppress mutations in hundreds of essential genes. Molecular Systems Biology. 2021;17(5): e10138. doi: 10.15252/msb.202010138
Rudman SM, Greenblum SI, Rajpurohit S, Betancourt NJ, Hanna J, Tilk S, et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science. 2022;375(6586): eabj7484. doi: 10.1126/science.abj7484
Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336(6085): 1157–1160. doi: 10.1126/science.1217405
Wang M, Wang D, Yu J, Huang S. Enrichment in conservative amino acid changes among fixed and standing missense variations in slowly evolving proteins. PeerJ. 2020;8: e9983. doi: 10.7717/peerj.9983
Bergsten J. A review of long-branch attraction. Cladistics: the International Journal of the Willi Hennig Society. 2005;21: 163–193. doi: 10.1111/j.1096-0031.2005.00059.x
Huang S. Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers. Science China Life Sciences. 2012;55: 709–725. doi: 10.1007/s11427-012-4350-7
Bickel D. A generalization of null hypothesis significance testing with applications to replication failures, molecular evolution models, and bounded parameter spaces. Zenodo. 2021. doi: 10.5281/zenodo.5123388
Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, et al. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science. 2025;387(6737): 1001–1007. doi: 10.1126/science.ads0215
Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, et al. Structurally divergent and recurrently mutated regions of primate genomes. Cell. 2024;187(6): 1547–1562.e13. doi: 10.1016/j.cell.2024.01.052
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, et al. The landscape of tolerated genetic variation in humans and primates. Science (New York, N.Y.). 2023;380(6648): eabn8153. doi: 10.1126/science.abn8197
Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055): 69–87. doi: 10.1038/nature04072
Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, et al. Comparative genomics of macaques and integrated insights into genetic variation and population history. bioRxiv. 2024: 2024.04.07.588379. doi: 10.1101/2024.04.07.588379
Orkin JD, Kuderna LFK, Hermosilla-Albala N, Fontsere C, Aylward ML, Janiak MC, et al. Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar. Nature Ecology and Evolution. 2025;9(1): 42–56. doi: 10.1038/s41559-024-02596-1
Wang M, Huang S. The collective effects of genetic variants and complex traits. Journal of Human Genetics. 2023;68: 255–262. doi: 10.1038/s10038-022-01105-1
Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, et al. The impact of rare protein coding genetic variation on adult cognitive function. Nature Genetics. 2023;55(6): 927–938. doi: 10.1038/s41588-023-01398-8
Ganna A, Genovese G, Howrigan DP, Byrnes A, Kurki M, Zekavat SM, et al. Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nature Neuroscience. 2016;19(12): 1563–1565. doi: 10.1038/nn.4404
Ganna A, Satterstrom FK, Zekavat SM, Das I, Kurki MI, Churchhouse C, et al. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. American Journal of Human Genetics. 2018;102(6): 1204–1211. doi: 10.1016/j.ajhg.2018.05.002
Sha Z, Sun KY, Jung B, Barzilay R, Moore TM, Almasy L, et al. The copy number variant architecture of psy-chopathology and cognitive development in the ABCD® study. medRxiv. 2024: 2024.05.14.24307376. doi: 10.1101/2024.05.14.24307376
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, et al. Genetic architecture of the structural connectome. Nature Communications. 2024;15(1): 1962. doi: 10.1038/s41467-024-46023-2
Zhang S, Xu N, Fu L, Yang X, Ma K, Li Y, et al. Integrated analysis of the complete sequence of a macaque genome. Nature. 2025. doi: 10.1038/s41586-025-08596-w
Joly M, Micheletta J, De Marco A, Langermans JA, Sterck EHM, Waller BM. Comparing physical and social cognitive skills in macaque species with different degrees of social tolerance. Proceedings. Biological Sciences/the Royal Society. 2017;284(1862): 20162738. doi: 10.1098/rspb.2016.2738
Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, et al. A global catalog of whole-genome diversity from 233 primate species. Science. 2023;380(6648): 906–913. doi: 10.1126/science.abn7829
de Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science. 2016;354(6311): 477–481. doi: 10.1126/science.aag2602
Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324(5930): 1035–1044. doi: 10.1126/science.1172257
Nédélec Y, Sanz J, Baharian G, Szpiech ZA, Pacis A, Dumaine A, et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell. 2016;167(3): 657–669.e21. doi: 10.1016/j.cell.2016.09.025
Quach H, Rotival M, Pothlichet J, Loh YE, Dannemann M, Zidane N, et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell. 2016;167(3): 643–656.e17. doi: 10.1016/j.cell.2016.09.024
Lei X, Yuan D, Zhu Z, Huang S. Collective effects of common SNPs and risk prediction in lung cancer. Heredity. 2018;121: 537–547. doi: 10.1038/s41437-018-0063-4
He P, Lei X, Yuan D, Zhu Z, Huang S. Accumulation of minor alleles and risk prediction in schizophrenia. Scientific Reports. 2017;7(1): 11661. doi: 10.1038/s41598-017-12104-0
Sanjak JS, Sidorenko J, Robinson MR, Thornton KR, Visscher PM. Evidence of directional and stabilizing selection in contemporary humans. Proceedings of the National academy of Sciences of the United States of America. 2018;115(1): 151–156. doi: 10.1073/pnas.1707227114
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, et al. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science. 2023;381(6664): eadd1250. doi: 10.1126/science.add1250
Mattick JS. A Kuhnian revolution in molecular biology: most genes in complex organisms express regulatory RNAs. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 2023;45(9): e2300080. doi: 10.1002/bies.202300080
Meneu L, Chapard C, Serizay J, Westbrook A, Routhier E, Ruault M, et al. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science. 2025;387(6734): eadm9466. doi: 10.1126/science.adm9466
Lake NJ, Ma K, Liu W, Battle SL, Laricchia KM, Tiao G, et al. Quantifying constraint in the human mitochondrial genome. Nature. 2024;635: 390–397. doi: 10.1038/s41586-024-08048-x
Couce A, Limdi A, Magnan M, Owen SV, Herren CM, Lenski RE, et al. Changing fitness effects of mutations through long-term bacterial evolution. Science. 2024;383(6681): eadd1417. doi: 10.1126/science.add1417
Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional structure. Cell. 2009;138(4): 774–786. doi: 10.1016/j.cell.2009.07.038
Jeong H, Dishuck PC, Yoo D, Harvey WT, Munson KM, Lewis AP, et al. Structural polymorphism and diversity of human segmental duplications. Nature Genetics. 2025;57(2): 390–401. doi: 10.1038/s41588-024-02051-8
Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, et al. The mutational landscape of human somatic and germline cells. Nature. 2021;597(7876): 381–386. doi: 10.1038/s41586-021-03822-7
Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, et al. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. Nature Aging. 2024;4(9): 1211–1230. doi: 10.1038/s43587-024-00672-6
Zeller E, Timmermann A, Yun KS, Raia P, Stein K, Ruan J. Human adaptation to diverse biomes over the past 3 million years. Science. 2023;380(6645): 604–608. doi: 10.1126/science.abq1288
Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, Kyriazis CC, et al. Genetic diversity loss in the Anthropocene. Science. 2022;377(6613): 1431–1435. doi: 10.1126/science.abn5642
Gross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, et al. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature. 2024;632(8026): 808–814. doi: 10.1038/s41586-024-07731-3
Huang S. A rebuttal to Zhang's critique of the genetic equidistance phenomenon and maximum genetic diversity hypothesis. Zenodo. 2025. doi: 10.5281/zenodo.14927073
Yuan D, Lei X, Gui Y, Zhu Z, Wang M, Zhang Y, et al. Modern human origins: multiregional evolution of autosomes and East Asia origin of Y and mtDNA. bioRxiv. 2017. doi: 10.1101/101410
Huang S. Examining models of modern human origins through the analysis of 43 fully sequenced human Y chromosomes, Communications in Information and Systems, in press. bioRxiv. 2023. doi: 10.1101/2023.11.09.566475