References
- Lin K, Zheng W, Lim CM, Huang Z. Real-time in vivo diagnosis of nasopharyngeal carcinoma using rapid fiber-optic Raman spectroscopy. Theranostics 2017; 7(14):3517-3526. doi:10.7150/thno.16359.
- Schmälzlin E, Moralejo B, Gersonde I, Schleusener J, Darvin ME, Thiede G, et al. Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination. Journal of Biomedical Optics 2018; 23(10):105001. doi:10.1117/1.jbo.23.10.105001.
- Ember K, Hoeve MA, McAughtrie S, Bergholt MS, Dwyer BJ, Stevens MM, et al. Raman spectroscopy and regenerative medicine: a review. NPJ Regenerative Medicine 2017; 2(1):12. doi:10.1038/s41536-017-0014-3.
- Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res Lett 2019; 14: 231. doi:10.1186/s11671-019-3039-2.
- Mohanty B, Dadlani D, Mahoney DF, Mann A. Characterizing and identifying incipient carious lesions in dental enamel using micro-Raman spectroscopy. Caries Research 2012; 47(1):27-33. doi: 10.1159/000342432.
- Buchwald T, Okulus Z, Szybowicz M. Raman spectroscopy as a tool of early dental caries detection - new insights. Journal of Raman Spectroscopy 2017; 48(8):1094-1102. doi:10.1002/jrs.5175.
- Ortega CCB. Study of demineralized dental enamel treated with different fluorinated compounds by Raman spectroscopy. Journal of Biomedical Physics and Engineering 2020; 10(5):635-644. doi:10.31661/jbpe.v0i0.2003-1089.
- Coello B, López-Álvarez M, Rodríguez-Domínguez M, Serra J, González P. Quantitative evaluation of the mineralization level of dental tissues by Raman spectroscopy. Biomedical Physics & Engineering Express 2015; 1(4):045204. doi:10.1088/2057-1976/1/4/045204.
- Ramakrishnaiah R, Kotha SB, Kheraif AAA, Celur SL, Divakar DD, Javed F, et al. Applications of Raman spectroscopy in dentistry - Part II: soft tissue analysis. Applied Spectroscopy Reviews 2016; 51(10):799-821. doi:10.1080/05704928.2016.1191018.
- Ember K, Hoeve MA, McAughtrie S, Bergholt MS, Dwyer BJ, Stevens MM, et al. Raman spectroscopy and regenerative medicine: a review. NPJ Regenerative Medicine 2017; 2(1):12. doi:10.1038/s41536-017-0014-3.
- Smith BC. Raman Spectroscopy: Principles and Instrumental Analysis. In: Physical Methods in Chemistry and Nano-Science. LibreTexts; 2025: Chapter 4.03.
- Cialla-May D, Schmitt M, Popp J. Theoretical principles of Raman spectroscopy. Physical Sciences Reviews 2019; 4(6). doi:10.1515/psr-2017-0040.
- Parson W. Modern Optical Spectroscopy. 2015. doi:10.1007/978-3-662-46777-0.
- Xu Y, Dong Q, Cong S, Zhao Z. SERS materials with small-molecule sensitivity for biological diagnosis. Analysis & Sensing 2024; 4(4). doi:10.1002/anse.202300067.
- Lyu N, Hassanzadeh-Barforoushi A, Gomez LMR, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. Nano Convergence 2024; 11(1):22. doi:10.1186/s40580-024-00428-3.
- Zeng H, Yu L, Han Y, Liu H, Yang H, Zhang W. Recent advances in miniaturized Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021; 248:119213. doi:10.1016/j. saa.2020.119213.
- Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A review on surface-enhanced Raman scattering. Biosensors 2019; 9(2):57. doi:10.3390/bios9020057.
- Joung Y, Park S, Joo S, Choo J. Recent trends in surface-enhanced Raman scattering-based in vitro diagnostics for translational biomedical research. Annual Review of Analytical Chemistry 2025. doi:10.1146/annurev-anchem-070524-093950.
- Qi Y, Liu Y, Luo J. Recent application of Raman spectroscopy in tumor diagnosis: from conventional methods to artificial intelligence fusion. PhotoniX 2023; 4(1). doi:10.1186/s43074-023-00098-0.
- Miyamoto I, Kaneko S, Aoki H, Kudo Y, Sasaki Y, Akasaka T. Raman spectroscopic study on enamel remineralization with calcium phosphate solutions. Materials 2020; 13(21):4900. doi:10.3390/ma13214900.
- Walther J, Barth M, Schulz H. Advanced Raman spectroscopic techniques for the assessment of dental tissues and their clinical potential. Analytical Chemistry 2023; 95(7):3720-3728. doi:10.1021/acs. analchem.2c04743.
- Li Z, Sun L, Liu J, Wang Q. Assessment of dental hard tissues using Raman spectroscopy after endodontic irrigation. Bone & Joint Research 2019; 8(1):19-31. doi:10.1302/2046-3758.81.BJR-2018-0060.R1.
- Soares CJ, Faria-e-Silva AL, Rodrigues MP, Vilela AB, Pfeifer CS, Giannini M. Raman spectroscopy for the analysis of dental hard tissues and dental biomaterials. Microscopy and Microanalysis 2013; 19(2):327-334. doi:10.1017/S1431927612014225.
- Tan LL, Zhao F, Qiao H, Zhao A, Malakar PK, Liu H, et al. High correlation between structure development and chemical variation during biofilm formation by Vibrio parahaemolyticus. Frontiers in Microbiology 2018; 9:1881. doi:10.3389/fmicb.2018.01881.
- Shah FA. Micro-Raman spectroscopy reveals the presence of octacalcium phosphate and whitlockite in association with bacteria-free zones within the mineralized dental biofilm. Microscopy and Microanalysis 2019; 25(1):129-134. doi:10.1017/S1431927618015659.
- Gieroba B, Krysa M, Wójtowicz K, Wiater A, Pleszczyńska M, Tomczyk M, et al. The FT-IR and Raman spectroscopies as tools for biofilm characterization created by cariogenic streptococci. International Journal of Molecular Sciences 2020; 21(11):3811. doi:10.3390/ijms21113811.
- Ebert C, Tuchscherr L, Unger N, Pöllath C, Gladigau F, Popp J, et al. Correlation of crystal violet biofilm test results of Staphylococcus aureus clinical isolates with Raman spectroscopic read-out. Journal of Raman Spectroscopy 2021; 52(12):2660-2670. doi:10.1002/jrs.6237.
- Camerlingo C, d’Apuzzo F, Grassia V, Perillo L, Lepore M. Micro-Raman spectroscopy for monitoring changes in periodontal ligaments and gingival crevicular fluid. Sensors 2014; 14(12):22552-22563. doi:10.3390/s141222552.
- Khalid M, Bora T, Ghaithi AA, Thukral SS, Dutta J. Raman spectroscopy detects changes in bone mineral quality and collagen cross-linkage in Staphylococcus-infected human bone. Scientific Reports 2018; 8:9417. doi:10.1038/s41598-018-27752-z.
- Тимченко ЕВ, Тимченко ПЕ, Volova LT, Frolov OO, Zibin M, Bazhutova IV Raman spectroscopy of changes in the tissues of teeth with periodontitis. Diagnostics 2020; 10(11):876. doi:10.3390/diagnostics10110876.
- Nicolson F, Kircher MF, Stone N, Matousek P. Spatially offset Raman spectroscopy for biomedical applications. Chemical Society Reviews 2021; 50(1):556-568. doi:10.1039/D0CS00855A.
- Aljuhani W, Wylie MP, Purusottam RN, McCoy CP, Bell SEJ. Probing the coupled equilibria between metal nanoparticles, antibiotics and components of the extracellular matrix in biofilms with SERS. Biomacromolecules 2025; 26(5):2900-2908. doi:10.1021/acs.biomac.4c01707.
- Sánchez-Tito M, Vía JAC, Tay LY. Raman microscopy evaluation of the preventive effect of a modified orthodontic adhesive with silver nanoparticles on the formation of white spot lesions. Journal of Clinical and Experimental Dentistry 2023; e706-e713. doi:10.4317/jced.60531.
- Bica C, Iliescu DB, Bica D, Bălan GG, Bălan A, Monea M. The role of computer simulation methods in avoiding orthodontic malpractice. Romanian Journal of Legal Medicine 2016; 24(3):226-230. doi:10.4323/rjlm.2016.226.
- Zhou J, Guo L, Yang Y, Liu Y, Zhang C. Mechanical force regulates root resorption in rats through RANKL and OPG. BMC Oral Health 2022; 22(1):290. doi:10.1186/s12903-022-02327-7.
- Minato Y, Yamaguchi M, Shimizu M, Kikuta J, Hikida T, Hikida M, et al. Effect of caspases and RANKL induced by heavy force in orthodontic root resorption. Korean Journal of Orthodontics 2018; 48(4):253- 261. doi:10.4041/kjod.2018.48.4.253.
- d’Apuzzo F, Nucci L, Delfino I, Portaccio M, Minervini G, Isola G, et al. Application of vibrational spectroscopies in the qualitative analysis of gingival crevicular fluid and periodontal ligament during orthodontic tooth movement. Journal of Clinical Medicine 2021; 10(7):1405. doi:10.3390/jcm10071405.
- Wen X, Pei F, Jin Y, Zhao Z. Exploring the mechanical and biological interplay in the periodontal ligament. International Journal of Oral Science 2025; 17(1):26. doi:10.1038/s41368-025-00354-y.
- Perillo L, d’Apuzzo F, Illario M, Laino L, Spigna GD, Lepore M, et al. Monitoring biochemical and structural changes in human periodontal ligaments during orthodontic treatment by means of micro-Raman spectroscopy. Sensors 2020; 20(2):497. doi:10.3390/s20020497.
- Xie Y, Zhao N, Shen G. Anti-resorptive effects of cementocytes during orthodontic tooth movement. Tropical Journal of Pharmaceutical Research 2019; 17(11):2291. doi:10.4314/tjpr.v17i11.26.
- Wu J, Xu L, Li C, Wang X, Jiang J. Exploration of key factors in gingival crevicular fluids from patients undergoing periodontally accelerated osteogenic orthodontics (PAOO) using proteome analysis. BMC Oral Health 2023; 23(1):934. doi:10.1186/s12903-023-03606-7.
- Yamamoto T, Uchida K, Naruse K, Suto M, Urabe K, Uchiyama K, et al. Quality assessment for processed and sterilized bone using Raman spectroscopy. Cell and Tissue Banking 2011; 13(3):409- 414. doi:10.1007/s10561-011-9277-x.
- Devpura S, Thakur JS, Sethi S, Naik VM, Naik R. Diagnosis of head and neck squamous cell carcinoma using Raman spectroscopy: tongue tissues. Journal of Raman Spectroscopy 2012; 43(4):490-496. doi:10.1002/jrs.3070.
- Han R, Lin N, Huang J, Ma X. Diagnostic accuracy of Raman spectroscopy in oral squamous cell carcinoma. Frontiers in Oncology 2022; 12:925032. doi:10.3389/fonc.2022.925032.
- Mian SA, Yorucu C, Ullah MS, Rehman IU, Colley H. Raman spectroscopy can discriminate between normal, dysplastic and cancerous oral mucosa: a tissue-engineering approach. Journal of Tissue Engineering and Regenerative Medicine 2016; 11(11):3253-3262. doi:10.1002/term.2234.
- Cals FLJ, Schut TCB, Koljenović S, Puppels GJ, de Jong RJB. Method development: Raman spectroscopy-based histopathology of oral mucosa. Journal of Raman Spectroscopy 2013; 44(7):963-972. doi:10.1002/jrs.4318.
- Valdés R, Stefanov S, Chiussi S, López-Alvarez M, González P. Pilot research on the evaluation and detection of head and neck squamous cell carcinoma by Raman spectroscopy. Journal of Raman Spectroscopy 2014; 45(5):550-557. doi:10.1002/jrs.4498.
- Pachaiappan R, Aruna P, Brindha E, Koteeswaran D, Baludavid M, Ganesan S. Near-infrared Raman spectroscopic characterization of salivary metabolites in the discrimination of normal from oral premalignant and malignant conditions. Journal of Raman Spectroscopy. 2016;47(7):763–772. doi:10.1002/jrs.4897
- Calado G, Behl I, Daniel A, Byrne HJ, Lyng FM. Raman spectroscopic analysis of saliva for the diagnosis of oral cancer: a systematic review. Translational Biophotonics 2019; 1(1-2):1-10. doi:10.1002/tbio.201900001.
- Aaboubout Y, Nunes Soares MR, Bakker Schut TC, Barroso EM, van der Wolf M, Sokolova E, Artyushenko V, Bocharnikov A, Usenov I, van Lanschot CGF, Ottevanger L, Mast H, Ten Hove I, Jonker BP, Keereweer S, Monserez DA, Sewnaik A, Hardillo JA, Baatenburg de Jong RJ, Koljenović S, Puppels GJ. Intraoperative assessment of resection margins by Raman spectroscopy to guide oral cancer surgery. Analyst 2023; 148(17):4116-4126. doi:10.1039/d3an00650f.
- Chen W, Chen Y, Wu C, Zhang X, Huang X. The accuracy of fiber-optic Raman spectroscopy in the detection and diagnosis of head and neck neoplasm in vivo: a systematic review and meta-analysis. PeerJ 2023; 11:e16536. doi:10.7717/peerj.16536.
- Yan H, Yu M, Xia J, Zhu L, Zhang T, Zhu Z, Sun G. Diverse region-based CNN for tongue squamous cell carcinoma classification with Raman spectroscopy. IEEE Access 2020; PP. 1–1. doi:10.1109/ACCESS.2020.300656.
- de Carvalho RF, Cruz FLG, Antunes DP, de Toledo Jr EG, de Oliveira LFC, de Paula MVQ, Devito KL. In vitro analysis of dental ceramics: evaluation of the radiopacity and chemical composition by Raman spectroscopy. Brazilian Dental Science 2018; 21(2):168. doi:10.14295/bds.2018.v21i2.1504.
- Wulfman C, Sadoun M, Lamy de la Chapelle M. Interest of Raman spectroscopy for the study of dental material: the zirconia material example. IRBM 2010; 31(4):257-262. doi:10.1016/j.irbm.2010.10.004.
- Iordache S-M, Iordache A-M, Gatin DI, Grigorescu CEA, Ilici RR, Luculescu C-R, Gatin E. Performance assessment of three similar dental restorative composite materials via Raman spectroscopy supported by complementary methods such as hardness and density measurements. Polymers 2024; 16(4):466. doi:10.3390/polym16040466.
- Soares LE, Nahórny S, Martin AA. FT-Raman spectroscopy study of organic matrix degradation in nanofilled resin composite. Microscopy and Microanalysis 2013; 19(2):327-334. doi:10.1017/S1431927612014225.
- Li M, Wang S, Li R, Wang Y, Fan X, Gong W, Ma Y. The mechanical and antibacterial properties of boron nitride/silver nanocomposite enhanced polymethyl methacrylate resin for application in oral denture bases. Biomimetics 2022; 7(3):138. doi:10.3390/biomimetics7030138.
- Kaczmarek K, Leniart A, Łapińska B, Skrzypek S, Łukomska-Szymańska M. Selected spectroscopic techniques for surface analysis of dental materials: a narrative review. Materials 2021; 14(10):2624. doi:10.3390/ma14102624.
- Szczesio-Włodarczyk A, Kopacz K, Ranoszek-Soliwoda K, Sokołowski J, Bociong K. Towards the standardization of artificial aging protocols for dental composites: evaluation of proposed methods. Journal of Functional Biomaterials 2025; 16(2):49. doi:10.3390/jfb16020049.
- Hardy M, Kelleher L, Gomes PDC, Buchan E, Chu HO, Oppenheimer PG. Methods in Raman spectroscopy for saliva studies - a review. Applied Spectroscopy Reviews 2021; 57(3):177-233. doi:10.10 80/05704928.2021.1969944.
- Campanella B, Legnaioli S, Onor M, Benedetti E, Bramanti E. The role of the preanalytical step for human saliva analysis via vibrational spectroscopy. Metabolites 2023; 13(3):393. doi:10.3390/metabo13030393.
- Crane NJ, O’Brien F, Forsberg JA, Potter BK, Elster EA. Developing a toolbox for analysis of warrior wound biopsies: vibrational spectroscopy. SPIE Proceedings 2011. doi:10.1117/12.877478.
- Crane NJ, Brown TS, Evans KN, Hawksworth J, Hussey S, Tadaki D, et al. Monitoring the healing of combat wounds using Raman spectroscopic mapping. Wound Repair and Regeneration 2010; 18(4):409- 416. doi:10.1111/j.1524-475X.2010.00597.x.
- Fraulob M, Pang S, Cann SL, Vayron R, Laurent-Brocq M, Todatry S, et al. Multimodal characterization of the bone-implant interface using Raman spectroscopy and nanoindentation. Medical Engineering & Physics 2020; 84:60-67. doi:10.1016/j.medengphy.2020.07.013.
- Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews 2007; 42(5):493-541. doi:10.1080/05704920701551530.
- Bergholt MS, Lin K, Zheng W, Lau DPC, Huang Z. In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx. Journal of Biomedical Optics 2012; 17(7):0770021. doi:10.1117/1.JBO.17.7.077002.
- Tamošiūnas M, Čiževskis O, Viškere D, Melderis M, Rubins U, Cugmas B. Multimodal approach of optical coherence tomography and Raman spectroscopy to differentiate benign and malignant skin tumors in animal patients. Cancers 2022; 14(12):2820. doi:10.3390/cancers14122820.