Have a personal or library account? Click to login
The Effects and Mechanisms of Action of Zearalenone in Human Intestinal Epithelial Cells Cover

The Effects and Mechanisms of Action of Zearalenone in Human Intestinal Epithelial Cells

Open Access
|Dec 2021

References

  1. Abid-Essefi, S., Ouanes, Z., Hassen, W., Baudrimont, I., Creppy, E., & Bacha, H. (2004). Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 18(4), 467–474. https://doi.org/10.1016/j.tiv.2003.12.01110.1016/j.tiv.2003.12.01115130604
  2. Bakker, M. G., Brown, D. W., Kelly, A. C., Kim, H.-S., Kurtzman, C. P., Mccormick, S. P., O'Donnell, K. L., Proctor, R. H., Vaughan, M. M., & Ward, T. J. (2018). Fusarium mycotoxins: a trans-disciplinary overview. Canadian Journal of Plant Pathology, 40(2), 161–171. https://doi.org/10.1080/07060661.2018.143372010.1080/07060661.2018.1433720
  3. Ben Salah-Abbès, Jalila, Hela Belgacem, Khawla Ezzdini, Mosaad A. Abdel-Wahhab, and Samir Abbès. 2020. “Zearalenone Nephrotoxicity: DNA Fragmentation, Apoptotic Gene Expression and Oxidative Stress Protected by Lactobacillus Plantarum MON03.” Toxicon 175:28–35.10.1016/j.toxicon.2019.12.00431830485
  4. Bulgaru, C. v, Marin, D. E., Pistol, G. C., & Taranu, I. (2021). Zearalenone and the Immune Response. In Toxins (Vol. 13, Issue 4). https://doi.org/10.3390/toxins1304024810.3390/toxins13040248806606833807171
  5. Busk, Ø. L., Ndossi, D., Verhaegen, S., Connolly, L., Eriksen, G., Ropstad, E., & Sørlie, M. (2011). Relative quantification of the proteomic changes associated with the mycotoxin zearalenone in the H295R steroidogenesis model. Toxicon, 58(6), 533–542. https://doi.org/https://doi.org/10.1016/j.toxicon.2011.08.01510.1016/j.toxicon.2011.08.01521907227
  6. Cavret, S., & Lecoeur, S. (2006). Fusariotoxin transfer in animal. Food and Chemical Toxicology, 44(3), 444–453. https://doi.org/https://doi.org/10.1016/j.fct2005.08.02110.1016/j.fct.2005.08.021
  7. Cirlini, M., Barilli, A., Galaverna, G., Michlmayr, H., Adam, G., Berthiller, F., & Dall’Asta, C. (2016). Study on the uptake and metabolism of the masked forms of zearalenone in human intestinal Caco-2 cells. Food and Chemical Toxicology, 98. https://doi.org/10.1016/j.fct.2016.11.00310.1016/j.fct.2016.11.00327816555
  8. Ding, J., Yeh, C.-R., Sun, Y., Lin, C., Chou, J., Ou, Z., Chang, C., Qi, J., & Yeh, S. (2018). Estrogen receptor β promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene, 37(37), 5037–5053. https://doi.org/10.1038/s41388-018-0175-610.1038/s41388-018-0175-629789714
  9. Gadzała-Kopciuch, R., Cendrowski, K., Cesarz, A., & Kiełbasa Pawełand Buszewski, B. (2011). Determination of zearalenone and its metabolites in endometrial cancer by coupled separation techniques. Analytical and Bioanalytical Chemistry, 401(7), 2069. https://doi.org/10.1007/s00216-011-5206-x10.1007/s00216-011-5206-x317503921750881
  10. Halbin, K., Mobio, T., Baudrimont, I., Serge, M., Dano, S., & Creppy, E. (2005). Comparative study of cyotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology, 213, 56–65. https://doi.org/10.101/j.tox.2005.05.01010.1016/j.tox.2005.05.01016019124
  11. Kamle, M., Mahato, D. K., Devi, S., Lee, K. E., Kang, S. G., & Kumar, P. (2019). Fumonisins: Impact on Agriculture, Food, and Human Health and their Management Strategies. Toxins, 11(6). https://doi.org/10.3390/toxins1106032810.3390/toxins11060328662843931181628
  12. Kozieł, M. J., Kowalska, K., & Piastowska-Ciesielska, A. W. (2021). Nrf2: a main responsive element in cells to mycotoxin-induced toxicity. Archives of Toxicology. https://doi.org/10.1007/s00204-021-02995-410.1007/s00204-021-02995-4
  13. Kuiper-Goodman, T., Scott, P. M., & Watanabe, H. (1987). Risk assessment of the mycotoxin zearalenone. Regulatory Toxicology and Pharmacology, 7(3), 253–306. https://doi.org/https://doi.org/10.1016/0273-2300(87)90037-710.1016/0273-2300(87)90037-7
  14. Lea, T. (2015). Caco-2 cell line. The Impact of Food Bioactives on Health, 103–111.10.1007/978-3-319-16104-4_1029787057
  15. Marin, D. E., Motiu, M., & Taranu, I. (2015). Food Contaminant Zearalenone and Its Metabolites Affect Cytokine Synthesis and Intestinal Epithelial Integrity of Porcine Cells. Toxins, 7(6), 1979–1988. https://doi.org/10.3390/toxins706197910.3390/toxins7061979448868526035492
  16. Marin, D. E., Taranu, I., Burlacu, R., & Tudor, D. S. (2010). Effects of zearalenone and its derivatives on the innate immune response of swine. Toxicon, 56(6), 956–963. https://doi.org/10.1016/J.TOXICON.2010.06.02010.1016/j.toxicon.2010.06.02020615424
  17. Oswald, I. I., Bouhet, S., Marin, D. E., Pinton, P. P., & Taranu, I. (2003). Mycotoxin effects on the pig immune system. Feed Compounder, 09, 16–20. https://hal.inrae.fr/hal-02671003
  18. Pistol, G. C., Braicu, C., Motiu, M., Gras, M. A., Marin, D. E., Stancu, M., Calin, L., Israel-Roming, F., Berindan-Neagoe, I., & Taranu, I. (2015). Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen. PLOS ONE, 10(5), e0127503. https://doi.org/10.1371/journal.pone.012750310.1371/journal.pone.0127503444419126011631
  19. Rai, A., Das, M., & Tripathi, A. (2020). Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Critical Reviews in Food Science and Nutrition, 60(16), 2710–2729. https://doi.org/10.1080/10408398.2019.165538810.1080/10408398.2019.165538831446772
  20. Rogowska, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., Złoch, M., Walczak, J., & Buszewski, B. (2019). A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon, 169, 81–90. https://doi.org/https://doi.org/10.1016/j.toxicon.2019.09.00810.1016/j.toxicon.2019.09.00831493420
  21. Schaut, A., de Saeger, S., Sergent, T., Schneider, Y.-J., Larondelle, Y., Pussemier, L., & van Peteghem, C. (2008). Study of the gastrointestinal biotransformation of zearalenone in a Caco-2 cell culture system with liquid chromatographic methods. Journal of Applied Toxicology, 28(8), 966–973. https://doi.org/https://doi.org/10.1002/jat.136210.1002/jat.136218548745
  22. Seyed Toutounchi, N., Hogenkamp, A., Varasteh, S., van't Land, B., Garssen, J., Kraneveld, A. D., Folkerts, G., & Braber, S. (2019). Fusarium Mycotoxins Disrupt the Barrier and Induce IL-6 Release in a Human Placental Epithelium Cell Line. In Toxins (Vol. 11, Issue 11). https://doi.org/10.3390/toxins1111066510.3390/toxins11110665689142731739567
  23. Ünüsan, N. (2019). Systematic review of mycotoxins in food and feeds in Turkey. Food Control, 97, 1–14. https://doi.org/10.1016/J.FOODCONT. 2018.10.01510.1016/j.foodcont.2018.10.015
  24. Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821–834. https://doi.org/10.1080/17474124.2017.134314310.1080/17474124.2017.1343143
  25. Videmann, B., Mazallon, M., Tep, J., & Lecoeur, S. (2008). Metabolism and transfer of the mycotoxin zearalenone in human intestinal Caco-2 cells. Food and Chemical Toxicology, 46(10), 3279–3286. https://doi.org/https://doi.org/10.1016/j.fct.2008.07.01110.1016/j.fct.2008.07.011
  26. Zhou, J., Zhu, L., Chen, J., Wang, W., Zhang, R., Li, Y., Zhang, Q., & Wang, W. (2020). Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase RmZHD: A QM/MM study. Science of The Total Environment, 709, 135897. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.13589710.1016/j.scitotenv.2019.135897
  27. Braicu, Cornelia, Sonia Selicean, Roxana Cojocneanu-Petric, Raduly Lajos, Ovidiu Balacescu, Ionelia Taranu, Daniela Eliza Marin, Monica Motiu, Ancuta Jurj, Patriciu Achimas-Cadariu, and Ioana Berindan-Neagoe. 2016. “Evaluation of Cellular and Molecular Impact of Zearalenone and Escherichia Coli Co-Exposure on IPEC-1 Cells Using Microarray Technology.” BMC Genomics 17(1):576.10.1186/s12864-016-2830-z
  28. Cheng, Qun, Shuzhen Jiang, Libo Huang, Yuxi Wang, Weiren Yang, Zaibin Yang, and Jinshan Ge. 2020. “Effects of Zearalenone-Induced Oxidative Stress and Keap1–Nrf2 Signaling Pathway-Related Gene Expression in the Ileum and Mesenteric Lymph Nodes of Post-Weaning Gilts.” Toxicology 429:152337.10.1016/j.tox.2019.152337
  29. Roh, Kyung-Baeg, Hyoyoung Kim, Seungwoo Shin, Young-Soo Kim, Jung-A. Lee, Mi Ok Kim, Eunsun Jung, Jongsung Lee, and Deokhoon Park. 2016. “Anti-Inflammatory Effects of Zea Mays L. Husk Extracts.” BMC Complementary and Alternative Medicine 16(1):298.10.1186/s12906-016-1284-9
  30. Ben Salah-Abbès, Jalila, Hela Belgacem, Khawla Ezzdini, Mosaad A. Abdel-Wahhab, and Samir Abbès. 2020. “Zearalenone Nephrotoxicity: DNA Fragmentation, Apoptotic Gene Expression and Oxidative Stress Protected by Lactobacillus Plantarum MON03.” Toxicon 175:28–35.10.1016/j.toxicon.2019.12.004
  31. So, Mei Yu, ZhiPeng Tian, Yong Shian Phoon, Sha Sha, Michael N. Antoniou, JiangWen Zhang, Rudolf S. S. Wu, and Kian C. Tan-Un. 2014. “Gene Expression Profile and Toxic Effects in Human Bronchial Epithelial Cells Exposed to Zearalenone.” PLOS ONE 9(5):e96404.10.1371/journal.pone.0096404
  32. Yordanova, Juliana, Osvaldo A. Rosso, and Vasil Kolev. 2003. “A Transient Dominance of Theta Event-Related Brain Potential Component Characterizes Stimulus Processing in an Auditory Oddball Task.” Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology 114(3):529—540.10.1016/S1388-2457(02)00415-7
DOI: https://doi.org/10.2478/azibna-2021-0019 | Journal eISSN: 2344-4592 | Journal ISSN: 1016-4855
Language: English
Page range: 134 - 149
Published on: Dec 30, 2021
Published by: National Institute for Research-Development in Biology and Animal Nutrition
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Valeria Cristina Bulgaru, Ionelia Țăranu, Anca Dinischiotu, published by National Institute for Research-Development in Biology and Animal Nutrition
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.