References
- [1] Nie Y, Zamzam AS, Brandt A., Resampling and data augmentation for short-term PV output prediction based on an imbalanced sky images dataset using convolutional neural networks, Solar Energy (2021) 224: 341-354
- [2] Feng C, Zhang J., SolarNet: A sky image-based deep convolutional neural network for intra-hour solar forecasting, Solar Energy (2020) 204: 71-78
- [3] Li Y, Su Y, Shu L, An ARMAX model for forecasting the power output of a grid connected photovoltaic system, Renewable Energy (2014) 66: 78-89
- [4] Kuhn P, Nouri B, Wilbert S, Prahl C, Kozonek N et al., Validation of an all-sky imager– based nowcasting system for industrial PV plants, Progress in Photovoltaics: Research and Applications (2018) 26(8): 608–21
- [5] Zhen Z, Pang S, Wang F, Li K, Li Z, Ren H, Shafie-khah M, Catalao JPS, Pattern Classification and PSO Optimal Weights Based Sky Images Cloud Motion Speed Calculation Method for Solar PV Power Forecasting, IEEE Transactions on Industry Application (2019) 55(4): 3331-3342
- [6] Wang F, Zhen Z, Liu C, Mi Z, Hodge BM, Shafie-khah M, Catalao JSP, Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting, Energy Conversion Management (2018) 157: 123-135.
- [7] Sun Y, Venugopal V, Brandt AR, Short-term solar power forecast with deep learning: Exploring optimal input and output configuration, Solar Energy (2019) 188:730-741
- [8] M. Paulescu, N. Stefu, C. Dughir, A. Sabadus, D. Calinoiu, V. Badescu, A simple but accurate two-state model for nowcasting PV power, Renewable Energy 195 (2022) 322-330
- [9] Blaga R, Dughir C, Sunshine number nowcasting based on all-sky images, (2022) To be published by the American Institute of Physics, AIP Conference Proceedings.
- [10] M. Paulescu1, R. Blaga, C. Dughir, N. Stefu, A. Sabadus, D. Calinoiu, V. Badescu, Intra-hour PV power forecasting based on sky imagery, Submitted to Energy, (2022)
- [11] Badescu V, Paulescu M, Statistical properties of the sunshine number illustrated with measurements from Timisoara (Romania), Atmos Res (2011) 101:194-204.
- [12] Solar Platform of the West University of Timisoara, Romania. http://solar.physics.uvt.ro/srms/, 2022 (accessed November 2022).
- [13] Kottek M, Grieser J, Beck C, Rudolf B, Rubel F, World Map of the Köppen-Geiger climate classification updated, Meteorol. Zeitschrift (2006) 15:259-263
