Have a personal or library account? Click to login
Short-Term PV Power Forecasting Based on Sky Imagery. A Case Study at the West University of Timisoara Cover

Short-Term PV Power Forecasting Based on Sky Imagery. A Case Study at the West University of Timisoara

Open Access
|Nov 2022

Abstract

This study deals with the performance of PV2-state model in intra-hour forecasting of photovoltaic (PV) power. The PV2-state model links an empirical model for estimating the PV power delivered by a PV system under clear-sky with a model for forecasting the relative position of the Sun and clouds. Sunshine number (SSN), a binary quantifier showing if the Sun shines or not, is used as a measure for the Sun position with respect to clouds. A physics-based approach to intra-hour forecasting, processing cloud field information from an all-sky imager, is applied to predict SSN. The quality of SSN prediction conditions the overall quality of PV2-state forecasts. The PV2-state performance was evaluated against a challenging database (high variability in the state-of-the-sky, thin cloud cover, broken cloud field, isolated passing clouds) comprising radiometric data and sky-images collected on the Solar Platform of the West University of Timisoara, Romania. The investigation was performed from two perspectives: general model accuracy and, as a novelty, identification of characteristic elements in the state-of-the-sky which fault the SSN prediction. The outcome of such analysis represents the basis of further research aiming to increase the performance in PV power forecasting.

DOI: https://doi.org/10.2478/awutp-2022-0010 | Journal eISSN: 2784-1057 | Journal ISSN: 1224-9718
Language: English
Page range: 148 - 157
Submitted on: Oct 9, 2022
Accepted on: Nov 11, 2022
Published on: Nov 28, 2022
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Robert Blaga, Ciprian Dughir, Andreea Sabadus, Nicoleta Stefu, Marius Paulescu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.