[2] W. Bu,Y. Ting, Y. Wu, J. Yang, Finite difference/finite element method for two-dimensional space and time fractional blochtorrey equations, J. Comput. Phys., 293 (2015), 264–279.10.1016/j.jcp.2014.06.031
[3] K. Parand, S. Abbasbandy, S. Kazem, A. R. Rezaei, An improved numerical method for a class of astrophysics problems based on radial basis functions, Phys. Scripta, 83 (1) (2011), 015011, 11 pages.10.1088/0031-8949/83/01/015011
[4] K. Parand, M. Hemami, Numerical Study of Astrophysics Equations by Meshless Collocation Method Based on Compactly Supported Radial Basis Function, Int. J. Appl. Comput. Math., 3 (2) (2017), 1053–1075.10.1007/s40819-016-0161-z
[6] J. A. Rad, K. Parand, Pricing American options under jump-diffusion models using local weak form meshless techniques, Int. J. Comp. Math., (2016) 10.1080/00207160.2016.1227434.
[7] J. A. Rad, K. Parand, Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method, Appl. Numer. Math., 115 (2017), 252–274.10.1016/j.apnum.2017.01.015
[8] K. Parand, P. Mazaheri, M. Delkhosh, A. Ghaderi, New numerical solutions for solving Kidder equation by using the rational Jacobi functions, SeMA J., (2017) doi:10.1007/s40324-016-0103-z.10.1007/s40324-016-0103-z
[9] K. Parand, M. Nikarya, J. A. Rad, Solving non-linear Lane-Emden type equations using Bessel orthogonal functions collocation method, Celest. Mech. Dyn. Astr., 116 (2013), 97–107.10.1007/s10569-013-9477-8
[10] D. Funaro and O. Kavian, approximation of some diffusion evolution equations in unbounded domains by Hermite functions, Math. Comput., 57 (1991), 597–619.10.1090/S0025-5718-1991-1094949-X
[11] B. Y. Guo, J. Shen, Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math. 86(4) (2000), 635–654.10.1007/PL00005413
[12] B. Y. Guo, Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations, J. Math. Anal. Appl., 243 (2000), 373–408.10.1006/jmaa.1999.6677
[13] J. A. Rad, K. Parand, L. V. Ballestra, Pricing European and American options by radial basis point interpolation, Appl. Math. Comput., 251 (2015), 363–377.10.1016/j.amc.2014.11.016
[14] J. A. Rad, K. Parand, S. Abbasbandy, Pricing European and American Options Using a Very Fast and Accurate Scheme: The Meshless Local Petrov-Galerkin Method, P. Natl Acad. Sci. India Section A: Phys. Sci., 85 (3) (2015), 337–351.10.1007/s40010-015-0207-3
[15] M. Delkhosh, M. Delkhosh, M. Jamali, Introduction to Green’s Function and its Numerical Solution, Middle-East J. Sci. Res., 11 (7) (2012), 974–981.10.1155/2012/180806
[17] K. Parand, M. Dehghan, F. Baharifard, Solving a laminar boundary layer equation with the rational Gegenbauer functions, Appl. Math. Model., 37 (2013), 851–863.10.1016/j.apm.2012.02.041
[18] J. A. Rad, S. Kazem, M. Shaban, K. Parand, A. Yildirim, Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials, Math. Method. Appl. Sci., 37 (3) (2014), 329–342.10.1002/mma.2794
[19] K. Parand, L. Hossein, Numerical approach of flow and mass transfer on nonlinear stretching sheet with chemically reactive species using rational Jacobi collocation method, Int. J. Numer. Method. H. F. F., 23 (5) (2013), 772–789.10.1108/HFF-06-2011-0146
[20] F. Baharifard, S. Kazem, K. Parand, Rational and Exponential Legendre Tau Method on Steady Flow of a Third Grade Fluid in a Porous Half Space, Int. J. Appl. Comput. Math., 2 (4) (2016), 679–698.10.1007/s40819-015-0096-9
[21] K. Parand, S. Khaleqi, The rational Chebyshev of Second Kind Collocation Method for Solving a Class of Astrophysics Problems, Eur. Phys. J. Plus, 131 (24), (2016).10.1140/epjp/i2016-16024-8
[24] E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigen-schaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente, Z. Phys., 48 (1928), 73–79.10.1007/BF01351576
[25] R. P. Feynman, N. Metropolis, E. Teller, Equations of State of Elements Based on the Generalized Fermi-Thomas Theory, Phys. Rev., 75 (10) (1949), 1561–1573.10.1103/PhysRev.75.1561
[28] A. Saadatmandi, M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Method. Part. D. E., 26 (1) (2010), 239–252.10.1002/num.20442
[29] A. H. Bhrawy, A. S. Alofi, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett., 26 (2013), 25–31.10.1016/j.aml.2012.01.027
[30] K. Parand, M. Delkhosh, M. Nikarya, Novel orthogonal functions for solving differential equations of arbitrary order, Tbilisi Math. J., 10 (1) (2017), 31–5510.1515/tmj-2017-0004
[31] K. Parand, M. Delkhosh, Operational Matrices to Solve Nonlinear Volterra-Fredholm Integro-Differential Equations of Multi-Arbitrary Order, Gazi Uni. J. Sci., 29 (4) (2016), 895–907.
[32] R. E. Bellman, R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier Publishing Company, New York, 1965.10.1109/TAC.1965.1098135
[34] K. Parand, M. Delkhosh, An Efficient Numerical Solution of Nonlinear Hunter-Saxton Equation, Commun. Theor. Phy., 67 (5) (2017), 483–49210.1088/0253-6102/67/5/483
[35] R. Krivec, V. B. Mandelzweig, Quasilinearization approach to computations with singular potentials, Comput. Phys. Comm., 179 (12) (2008), 865–867.10.1016/j.cpc.2008.07.006
[36] E. Z. Liverts, V. B. Mandelzweig, Analytical computation of amplification of coupling in relativistic equations with Yukawa potential, Ann. Phys-New York, 324 (2) (2009), 388–407.10.1016/j.aop.2008.08.004
[37] K. Parand, M. M. Moayeri, S. Latifi, M. Delkhosh, A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions, Euro. Phy. J. Plus, 132 (7) (2017), 325.10.1140/epjp/i2017-11600-0
[38] V. B. Mandelzweig, F. Tabakinb, Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Comput. Phys. Commun., 141 (2001), 268–281.10.1016/S0010-4655(01)00415-5
[39] E. B. Baker, The application of the Fermi-Thomas statistical model to the calculation of potential distribution in positive ions, Quart. Appl. Math., 36 (1930), 630–647.10.1103/PhysRev.36.630
[40] N. A. Zaitsev, I. V. Matyushkin, D. V. Shamonov, Numerical Solution of the Thomas-Fermi Equation for the Centrally Symmetric Atom, Russ. Microelectronics, 33 (2004), 303–309.10.1023/B:RUMI.0000043047.02416.47
[42] C. Miranda, Teorie e metodi per l’integrazione numerica dell’equazione differenziale di Fermi, Memorie della Reale Accademia d’Italia, Classe di scienze fisiche, Math. Nat., 5 (1934), 285–322.
[43] S. Kobayashi, T. Matsukuma, S. Nagi, K. Umeda, Accurate value of the initial slope of the ordinary T-F function, J. Phys. Soc. Japan, 10 (1955), 759–762.10.1143/JPSJ.10.759
[44] J. C. Mason, Rational approximations to the ordinary Thomas-Fermi function and its derivative, Proc. Phys. Soc., 84 (1964), 357–359.10.1088/0370-1328/84/3/304
[48] L. N. Epele, H. Fanchiotti, C. A. G. Canal, J. A. Ponciano, Pade approximate approach to the Thomas-Fermi problem, Phys. Rev. A, 60 (1999), 280–283.10.1103/PhysRevA.60.280
[54] K. Parand, M. Shahini, Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation, Phys. Let. A, 373 (2009), 210–213.10.1016/j.physleta.2008.10.044
[55] V. Marinca, N. Herisanu, An optimal iteration method with application to the Thomas-Fermi equation, Cent. Eur. J. Phys., 9 (2011), 891–895.10.2478/s11534-010-0059-z
[57] S. Abbasbandy, C. Bervillier, Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations, Appl. Math. Comput., 218 (2011), 2178–2199.10.1016/j.amc.2011.07.035
[60] M. Turkyilmazoglu, Solution of the Thomas-Fermi equation with a convergent approach, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 4097–4103.10.1016/j.cnsns.2012.01.030
[61] Y. Zhao, Z. Lin, Z. Liu, S. Liao, The improved homotopy analysis method for the Thomas-Fermi equation, Appl. Math. Comput., 218 (2012), 8363–8369.10.1016/j.amc.2012.02.004
[62] J. P. Boyd, Rational Chebyshev series for the Thomas-Fermi function: Endpoint singularities and spectral methods, J. Comput. Appl. Math., 244 (2013), 90–101.10.1016/j.cam.2012.11.015
[63] K. Parand, M. Dehghanb, A. Pirkhedri, The Sinc-collocation method for solving the Thomas-Fermi equation, J. Comput. Appl. Math., 237 (2013), 244–252.10.1016/j.cam.2012.08.001
[64] V. Marinca, R. D. Ene, Analytical approximate solutions to the Thomas-Fermi equation, Cent. Eur. J. Phys., 12 (7) (2014), 503–510.10.2478/s11534-014-0472-9
[65] A. Kilicman, I. Hashimb, M. Tavassoli Kajani, M. Maleki, On the rational second kind Chebyshev pseudospectral method for the solution of the Thomas-Fermi equation over an infinite interval, J. Comput. Appl. Math., 257 (2014), 79–85.10.1016/j.cam.2013.07.050
[66] R. Jovanovic, S. Kais, F. H. Alharbi, Spectral Method for Solving the Nonlinear Thomas-Fermi Equation Based on Exponential Functions, J. App. Math., 2014 (2014), Article ID 168568, 8 pages.10.1155/2014/168568
[67] F. Bayatbabolghani, K. Parand, Using Hermite Function for Solving Thomas-Fermi Equation, Int. J. Math. Comput. Phys. Elect. Comp. Eng., 8(1) (2014), 123–126.
[68] P. Amore, J. P. Boyd, F. M. Fernandez, Accurate calculation of the solutions to the Thomas-Fermi equations, Appl. Math. Comput., 232 (2014), 929–943.10.1016/j.amc.2014.01.137
[69] H. Fatoorehchi, H. Abolghasemi, An Explicit Analytic Solution to the Thomas-Fermi Equation by the Improved Differential Transform Method, Acta Phys. Pol. A, 125 (5) (2014), 1083–1087.10.12693/APhysPolA.125.1083
[70] C. Liu, S. Zhu, Laguerre pseudospectral approximation to the Thomas-Fermi equation, J. Comput. Appl. Math., 282 (2015), 251–261.10.1016/j.cam.2015.01.004
[71] K. Parand, H. Yousefi, M. Delkhosh, A. Ghaderi, A Novel Numerical Technique to Obtain an Accurate Solution of the Thomas-Fermi Equation, Eur. Phys. J. Plus, 131 (2016), 228.10.1140/epjp/i2016-16228-x
[72] K. Parand, A. Ghaderi, M. Delkhosh, H. Yousefi, A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions, Electron. J. Differential Equations, 2016 (331) (2016), 1–18.
[73] K. Parand, M. Delkhosh, Accurate solution of the Thomas-Fermi equation using the fractional order of rational Chebyshev functions, J. Comput. Appl. Math., 317 (2017), 624–642.10.1016/j.cam.2016.11.035
[74] K. Parand, M. Delkhosh, New Numerical Solution For Solving Nonlinear Singular Thomas-Fermi Differential Equation, Bull. Belg. Math. Soc. Simon Stevin, 24 (3) (2017), 457–476.10.36045/bbms/1506477694