Have a personal or library account? Click to login

On the sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function

By:
Feng Qi and  Bai-Ni Guo  
Open Access
|Sep 2018

References

  1. [1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Dover Publications, New York and Washington, 1972.
  2. [2] J. C. Ahuja and E. A. Enneking, Concavity property and a recurrence relation for associated Lah numbers, Fibonacci Quart., 17 (2) (1979), 158–161.
  3. [3] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974.
  4. [4] G. Gasper and M. Rahman, Basic Hypergeometric Series, With a fore-word by Richard Askey, Second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004; Available online at http://dx.doi.org/10.1017/CBO9780511526251.10.1017/CBO9780511526251
  5. [5] B.-N. Guo and F. Qi, An explicit formula for Bell numbers in terms of Stirling numbers and hypergeometric functions, Glob. J. Math. Anal., 2 (4) (2014), 243–248; Available online at http://dx.doi.org/10.14419/gjma.v2i4.3310.10.14419/gjma.v2i4.3310
  6. [6] B.-N. Guo and F. Qi, Some integral representations and properties of Lah numbers, J. Algebra Number Theory Acad., 4 (3) (2014), 77–87.
  7. [7] F. Qi, An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers, Mediterr. J. Math., 13 (5) (2016), 2795–2800; Available online at http://dx.doi.org/10.1007/s00009-015-0655-7.10.1007/s00009-015-0655-7
  8. [8] F. Qi, On sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function, ResearchGate Research (2015), available online at http://dx.doi.org/10.13140/RG.2.1.4089.9683.
  9. [9] F. Qi, Six proofs for an identity of the Lah numbers, Online J. Anal. Comb., 10 (2015), 5 pages.
  10. [10] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput., 268 (2015), 844–858; Available online at http://dx.doi.org/10.1016/j.amc.2015.06.123.10.1016/j.amc.2015.06.123
  11. [11] F. Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contrib. Discrete Math. 11 (1) (2016), 22–30; Available on-line at http://hdl.handle.net/10515/sy5wh2dx6 and http://dx.doi.org/10515/sy5wh2dx6.
  12. [12] F. Qi, Some inequalities for the Bell numbers, Proc. Indian Acad. Sci. 127 (4) (2017), 551–564; Available online at https://doi.org/10.1007/s12044-017-0355-2.10.1007/s12044-017-0355-2
  13. [13] F. Qi, X.-T. Shi, and F.-F. Liu, Expansions of the exponential and the logarithm of power series and applications, Arabian J. Math., 6 (2) (2017), 95–108; Available online at https://doi.org/10.1007/s40065-017-0166-4.10.1007/s40065-017-0166-4
  14. [14] F. Qi, X.-T. Shi, and F.-F. Liu, Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers, Acta Univ. Sapientiae Math., 8 (2) (2016), 282–297; Available online at http://dx.doi.org/10.1515/ausm-2016-0019.10.1515/ausm-2016-0019
  15. [15] F. Qi and X.-J. Zhang, An integral representation, some inequalities, and complete monotonicity of the Bernoulli numbers of the second kind, Bull. Korean Math. Soc., 52 (3) (2015), 987–998; Available online at http://dx.doi.org/10.4134/BKMS.2015.52.3.987.10.4134/BKMS.2015.52.3.987
  16. [16] F. Qi and M.-M. Zheng, Explicit expressions for a family of the Bell polynomials and applications, Appl. Math. Comput., 258 (2015), 597–607; Available online at http://dx.doi.org/10.1016/j.amc.2015.02.027.10.1016/j.amc.2015.02.027
  17. [17] W. Rudin, Real and Complex Analysis, International Student Edition, McGraw-Hill Book Company, 1970.
  18. [18] C.-F. Wei and F. Qi, Several closed expressions for the Euler numbers, J. Inequal. Appl., 2015, 2015:219, 8 pages; Available online at http://dx.doi.org/10.1186/s13660-015-0738-9.10.1186/s13660-015-0738-9
Language: English
Page range: 125 - 133
Submitted on: Jun 17, 2017
Published on: Sep 10, 2018
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2018 Feng Qi, Bai-Ni Guo, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.