[2] V. Berinde, V. and M. Păcurar, An iterative method for approximating fixed points of Prešić nonexpansive mappings, Rev. Anal. Numér. Théor. Approx., 38 (2) (2009), 144–153.10.33993/jnaat382-909
[3] V. Berinde, A. R. Khan, M. Păcurar, Coupled solutions for a bivariate weakly nonexpansive operator by iterations Fixed Point Theory Appl. 2014, 2014:149, 12 pp.10.1186/1687-1812-2014-149
[4] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999.10.1007/978-3-662-12494-9
[6] L. B. Cirić and S. B. Prešić, On Prešić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenianae, 76 (2) (2007), 143–147.
[7] H. Fukhar-ud-din, A. R. Khan, Z. Akhtar, Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces, Nonlinear Analysis, 75 (2012) 4747–4760.10.1016/j.na.2012.03.025
[8] H. Fukhar-ud-din, V. Berinde and A. R. Khan, Fixed point approximation of Prešić nonexpansive mappings in product of CAT(0) spaces, Carpatheian J. Math., 32 (3) (2016), 315–322.10.1186/s13663-015-0483-2
[11] A. R. Khan, M. A. Khamsi and H. Fukhar-ud-din, Strong convergence of a general iteration scheme in CAT(0)-spaces, Nonlinear Anal., 74 (2011), 783–791.10.1016/j.na.2010.09.029
[12] W. A. Kirk, Geodesic geometry and fixed point theory II, in: Proceedings of the International Conference in Fixed Point Theory and Applications, Valencia, Spain, 2003, pp. 113–142.
[13] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics. Wiley-Interscience, New York, 2001.10.1002/9781118033074
[17] ———, Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method, An. Şt. Univ. Ovidius Constan c ta, 17 (1) (2009), pp. 153168.
[18] ———, A multi-step iterative method for approximating common fixed points of Prešić-Rus type operators on metric spaces, Studia Univ. Babeş-Bolyai Math., 55 1 (2010), 149–162.
[19] W. Phuengrattana and S. Suantai, Strong convergence theorems for a countable family of nonexpansive mappings in convex metric spaces, Abstract Applied Anal., vol. 2011, Article ID 929037, 18 pages.10.1155/2011/929037
[20] S. B. Prešić, Sur une classe d’ inéquations aux différences finites et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19) (1965), 75–78.
[22] T. Shimizu, A convergence theorem to common fixed points of families of nonexpansive mappings in convex metric spaces, in Proceedings of the International Conference on Nonlinear and Convex Analysis (2005), 575–585.
[23] T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., 8 (1996), 197–203.10.12775/TMNA.1996.028