Have a personal or library account? Click to login

Fixed point iterations for Prešić-Kannan nonexpansive mappings in product convex metric spaces

Open Access
|Sep 2018

References

  1. [1] D. E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc., 82 (1981), 423–424.10.1090/S0002-9939-1981-0612733-0
  2. [2] V. Berinde, V. and M. Păcurar, An iterative method for approximating fixed points of Prešić nonexpansive mappings, Rev. Anal. Numér. Théor. Approx., 38 (2) (2009), 144–153.10.33993/jnaat382-909
  3. [3] V. Berinde, A. R. Khan, M. Păcurar, Coupled solutions for a bivariate weakly nonexpansive operator by iterations Fixed Point Theory Appl. 2014, 2014:149, 12 pp.10.1186/1687-1812-2014-149
  4. [4] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999.10.1007/978-3-662-12494-9
  5. [5] H. Busemann, Spaces with non-positive curvature, Acta Math., 80 (1948), 259–310.10.1007/BF02393651
  6. [6] L. B. Cirić and S. B. Prešić, On Prešić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenianae, 76 (2) (2007), 143–147.
  7. [7] H. Fukhar-ud-din, A. R. Khan, Z. Akhtar, Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces, Nonlinear Analysis, 75 (2012) 4747–4760.10.1016/j.na.2012.03.025
  8. [8] H. Fukhar-ud-din, V. Berinde and A. R. Khan, Fixed point approximation of Prešić nonexpansive mappings in product of CAT(0) spaces, Carpatheian J. Math., 32 (3) (2016), 315–322.10.1186/s13663-015-0483-2
  9. [9] R. Kannan, Some results on fixed points—IV, Fund. Math. LXXIV (1972), 181–187.10.4064/fm-74-3-181-187
  10. [10] R. Kannan, Fixed point theorems in reflexive Banach spaces, Proc. Amer. Math. Soc., 38 (1973), 111–118.10.1090/S0002-9939-1973-0313896-2
  11. [11] A. R. Khan, M. A. Khamsi and H. Fukhar-ud-din, Strong convergence of a general iteration scheme in CAT(0)-spaces, Nonlinear Anal., 74 (2011), 783–791.10.1016/j.na.2010.09.029
  12. [12] W. A. Kirk, Geodesic geometry and fixed point theory II, in: Proceedings of the International Conference in Fixed Point Theory and Applications, Valencia, Spain, 2003, pp. 113–142.
  13. [13] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics. Wiley-Interscience, New York, 2001.10.1002/9781118033074
  14. [14] W. R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4 (1953), 506–510.10.1090/S0002-9939-1953-0054846-3
  15. [15] M. Păcurar, Iterative Methods for Fixed Point Approximation, PhD Thesis, “Babeş-Bolyai” University, Cluj-Napoca, 2009.
  16. [16] ——–, A multi-step iterative method for approximating fixed points of Prešić-Kannan operators, Acta Math. Univ. Comenianae, Vol. LXXIX, 1 (2010), 77–88.
  17. [17] ———, Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method, An. Şt. Univ. Ovidius Constan c ta, 17 (1) (2009), pp. 153168.
  18. [18] ———, A multi-step iterative method for approximating common fixed points of Prešić-Rus type operators on metric spaces, Studia Univ. Babeş-Bolyai Math., 55 1 (2010), 149–162.
  19. [19] W. Phuengrattana and S. Suantai, Strong convergence theorems for a countable family of nonexpansive mappings in convex metric spaces, Abstract Applied Anal., vol. 2011, Article ID 929037, 18 pages.10.1155/2011/929037
  20. [20] S. B. Prešić, Sur une classe d’ inéquations aux différences finites et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19) (1965), 75–78.
  21. [21] I. Rus, An iterative method for the solution of the equation x = f(x,x,...,x), Rev. Anal. Numer. Theor. Approx., 10 (1) (1981), 95–100.
  22. [22] T. Shimizu, A convergence theorem to common fixed points of families of nonexpansive mappings in convex metric spaces, in Proceedings of the International Conference on Nonlinear and Convex Analysis (2005), 575–585.
  23. [23] T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., 8 (1996), 197–203.10.12775/TMNA.1996.028
  24. [24] P. M. Soardi, Struttura quasi normale e teoremi di punto unito, Rend. Istit. Mat. Univ. Trieste, 4 (1972), 105–114.
  25. [25] W. Takahashi, A convexity in metric spaces and non-expansive mappings, Kodai Math. Sem. Rep., 22 (1970), 142–149.10.2996/kmj/1138846111
Language: English
Page range: 56 - 69
Submitted on: Feb 21, 2017
Published on: Sep 10, 2018
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2018 Hafiz Fukhar-ud-din, Vasile Berinde, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.