Have a personal or library account? Click to login

On a quadratic type functional equation on locally compact abelian groups

Open Access
|Sep 2018

Abstract

Let (G,+) be a locally compact abelian Hausdorff group, 𝓀 is a finite automorphism group of G, κ = card𝒦 and let µ be a regular compactly supported complex-valued Borel measure on G such that μ(G)=1κ$\mu ({\rm{G}}) = {1 \over \kappa }$. We find the continuous solutions f, g : G → ℂ of the functional equation k𝒦λ𝒦Gf(x+ky+λs)dμ(s)=g(y)+κf(x),x,yG,$$\sum\limits_{k \in {\cal K}} {\sum\limits_{\lambda \in {\cal K}} {\int_{\rm{G}} {{\rm{f}}({\rm{x}} + {\rm{k}} \cdot {\rm{y}} + } \lambda \cdot {\rm{s}}){\rm{d}}\mu ({\rm{s}}) = {\rm{g}}({\rm{y}}) + \kappa {\rm{f}}({\rm{x}}),\,{\rm{x}},{\rm{y}} \in {\rm{G}},} } $$ in terms of k-additive mappings. This equations provides a common generalization of many functional equations (quadratic, Jensen’s, Cauchy equations).

Language: English
Page range: 46 - 55
Submitted on: May 10, 2017
Published on: Sep 10, 2018
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2018 Hajira Dimou, Youssef Aribou, Abdellatif Chahbi, Samir Kabbaj, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.