References
- S.J. Baishya, Revisiting the Leinster groups, C.R. Math. 352 (2014), 1-6.
- S.J. Baishya, On Leinster groups of order pqrs, arXiv:1911.04829.
- W.C. Calhoun, Counting subgroups of some finite groups, Amer. Math. Monthly 94 (1987), 54-59.
- K. Conrad, Normal Subgroups of Aff (F), https://kconrad.math.uconn.edu/blurbs/grouptheory/affinenormal.pdf
- K. Conrad, Dihedral groups ii, http://www.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf
- R. Guy, Unsolved Problems in Number Theory, third edition, Springer Verlag, 2004.
- B. Huppert, Endliche Gruppen, I, Springer Verlag, Berlin, 1967.
- I.M. Isaacs, Finite Group Theory, Amer. Math. Soc., Providence, R.I., 2008.
- T. Leinster, Perfect numbers and groups, Eureka 55 (2001), 1727.
- D. A. Lingenbrink Jr., A New Subgroup Chain for the Finite Affine Group, (2014), HMC Senior Theses, 55. https://scholarship.claremont.edu/hmctheses/55
- T. De Medts and A. Maróti, Perfect numbers and finite groups, Rend. Semin. Mat. Univ. Padova 129 (2013), 1734.
- G. A. Miller, Form of the number of subgroups of prime power groups, Bull. Amer. Math. Soc. 26 (1919), 6672.
- J. Nieuwveld, A note on Leinster groups, https://www.math.ru.nl/~bosma/Students/JorisNieuwveld/
- H. Saydi, Normal supercharacter theories of the dicyclic groups, Int. Electron. J. Algebra, 37 (2025), 125-139.
- W. R. Scott, Group Theory, Dover Publications, New York, 1987.
- M. Trnuceanu, The normal subgroup structure of ZM-groups, Ann. Mat. Pura Appl. 193 (2014), 10851088.
- H. J. Zassenhaus, The theory of groups, Chelsea Publishing Company, 1949.
- The GAP Group, GAP groups, algorithms, and programming, version 4.11.0, (2020), https://www.gap-system.org
- The Great Internet Mersenne Prime Search, https://www.mersenne.org/.
- MathOverflow, Is there an odd-order group whose order is the sum of the orders of the proper normal subgroups?, (2011), https://mathoverflow.net/questions/54851