Have a personal or library account? Click to login
Necessary conditions and sufficient conditions for h-dichotomy of skew-evolution cocycles in Banach spaces Cover

Necessary conditions and sufficient conditions for h-dichotomy of skew-evolution cocycles in Banach spaces

By: Ariana Găină and  Mihail Megan  
Open Access
|Jun 2025

References

  1. L. Barreira, C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Math. 1926, Springer, (2008).
  2. R. Boruga (Toma), M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math., 37(1) (2021), 45–51.
  3. A.J.G. Bento, C.M. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257 (2009), 122–148.
  4. A. Bento, N. Lupa, M. Megan, C. Silva, Integral conditions for nonuniform µ−dichotomy on the half-line, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3063–3077.
  5. S. N. Chow, H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differential Equations, 120 (1995), 429–477.
  6. D. Dragičević, Strong nonuniform behaviour: A Datko type characterization, J. Math. Anal. Appl., 459 (2018), 266–290.
  7. D. Dragičević, A. L. Sasu, B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math., 38 (3) (2022), 663 – 680.
  8. S. Elaydi, R. J. Sacker, Skew-product dynamical systems: applications to difference equations, Proceedings of Second Annual Celebration of Math United Arab Emirates (2005).
  9. A. Găină, On uniform h-dichotomy of skew-evolution cocycles in Banach spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform., 58 (2022), No. 2, 96–106.
  10. A. Găină, M. Megan, R. Boruga (Toma), Nonuniform dichotomy with growth rates of skew-evolution cocycles in Banach spaces, Axioms, 12(4):394 (2023), 1–21.
  11. M. I. Kovacs, M. Megan, C. L. Mihiţ, On (h,k) - dichotomy and (h,k) - trichotomy of noninvertible evolution operators in Banach spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform., 52(2) (2014), 127–143.
  12. Y. Latushkin, S. Montgomery-Smith, T. Randolph - Evolutionary semi-groups and dichotomy of linear skew-product flows on locally compact spaces with Banach fibres, J. Differential Equations, 125 (1996), 75–116.
  13. N. Lupa, I.-L. Popa, On exponential stability of linear skew-evolution semiflows in Banach spaces, Proceeding of the 5th International Conference ”Dynamical Systems and Applications Ovidius University Annals Series: Civil Engineering, 1(11) (2009), 175–184.
  14. N. Lupa, M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh. Math., 174(2) (2014), 265–284.
  15. M. Megan, On (h; k)-dichotomy of evolution operators in Banach spaces, Dyn. Syst. Appl., 5 (1996), 189–196.
  16. M. Megan, A. Găină, R. Boruga (Toma), On dichotomy with differentiable growth rates for skew-evolution cocycles in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 15, no. 1–2, (2023), 1–18.
  17. M. Megan, A. L. Sasu, B. Sasu, Uniform exponential dichotomy and admissibility for linear skew-product semiflows, Oper. Theory Adv. Appl., 153 (2004), 185–195 .
  18. M. Megan, A. L. Sasu, B. Sasu, Exponential stability and exponential instability for linear skew-product flows, Math. Bohem., 129 (3) (2004), 225–243.
  19. M. Megan, C. Stoica, Concepts of dichotomy for skew-evolution semiflows on Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2 (2010), 125–140.
  20. M. Megan, C. Stoica, L. Buliga, On asymptotic behaviour for linear skew-evolution semiflows in Banach spaces, Carpathian J. Math., 23, 1-2, (2007), 117–125.
  21. C. L. Mihiţ, D. Borlea, M. Megan, On some concepts of (h, k)-splitting for skew-evolution semiflows in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 9 (2017), 186–204.
  22. C. L. Mihiţ, M. Megan, Integral characterizations for the (h, k)-splitting of skew-evolution semiflows, Stud. Univ. Babeş-Bolyai Math., 62 (3) (2017), 353–365.
  23. I. L. Popa, M. Megan, T. Ceauşu, Exponential dichotomies for linear difference systems in Banach spaces, Appl. Anal. Discr. Math., 6 (1) (2012), 140–155.
  24. A. L. Sasu, B. Sasu, Integral equations, dichotomy of evolution families on the half-line and applications, Integr. Equ. Oper. Theory, 66 (1) (2010), 113–140.
  25. C. Stoica, M. Megan, Nonuniform behaviors for skew-evolution semiflows on Banach spaces, Operator Theory Live, Theta Ser. Adv. Math., (2010), 203–211.
DOI: https://doi.org/10.2478/auom-2025-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 89 - 105
Submitted on: Aug 1, 2024
Accepted on: Nov 29, 2024
Published on: Jun 3, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Ariana Găină, Mihail Megan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.