References
- L. Barreira, C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Math. 1926, Springer, (2008).
- R. Boruga (Toma), M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math., 37(1) (2021), 45–51.
- A.J.G. Bento, C.M. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257 (2009), 122–148.
- A. Bento, N. Lupa, M. Megan, C. Silva, Integral conditions for nonuniform µ−dichotomy on the half-line, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3063–3077.
- S. N. Chow, H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, J. Differential Equations, 120 (1995), 429–477.
- D. Dragičević, Strong nonuniform behaviour: A Datko type characterization, J. Math. Anal. Appl., 459 (2018), 266–290.
- D. Dragičević, A. L. Sasu, B. Sasu, On polynomial dichotomies of discrete nonautonomous systems on the half-line, Carpathian J. Math., 38 (3) (2022), 663 – 680.
- S. Elaydi, R. J. Sacker, Skew-product dynamical systems: applications to difference equations, Proceedings of Second Annual Celebration of Math United Arab Emirates (2005).
- A. Găină, On uniform h-dichotomy of skew-evolution cocycles in Banach spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform., 58 (2022), No. 2, 96–106.
- A. Găină, M. Megan, R. Boruga (Toma), Nonuniform dichotomy with growth rates of skew-evolution cocycles in Banach spaces, Axioms, 12(4):394 (2023), 1–21.
- M. I. Kovacs, M. Megan, C. L. Mihiţ, On (h,k) - dichotomy and (h,k) - trichotomy of noninvertible evolution operators in Banach spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform., 52(2) (2014), 127–143.
- Y. Latushkin, S. Montgomery-Smith, T. Randolph - Evolutionary semi-groups and dichotomy of linear skew-product flows on locally compact spaces with Banach fibres, J. Differential Equations, 125 (1996), 75–116.
- N. Lupa, I.-L. Popa, On exponential stability of linear skew-evolution semiflows in Banach spaces, Proceeding of the 5th International Conference ”Dynamical Systems and Applications Ovidius University Annals Series: Civil Engineering, 1(11) (2009), 175–184.
- N. Lupa, M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh. Math., 174(2) (2014), 265–284.
- M. Megan, On (h; k)-dichotomy of evolution operators in Banach spaces, Dyn. Syst. Appl., 5 (1996), 189–196.
- M. Megan, A. Găină, R. Boruga (Toma), On dichotomy with differentiable growth rates for skew-evolution cocycles in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 15, no. 1–2, (2023), 1–18.
- M. Megan, A. L. Sasu, B. Sasu, Uniform exponential dichotomy and admissibility for linear skew-product semiflows, Oper. Theory Adv. Appl., 153 (2004), 185–195 .
- M. Megan, A. L. Sasu, B. Sasu, Exponential stability and exponential instability for linear skew-product flows, Math. Bohem., 129 (3) (2004), 225–243.
- M. Megan, C. Stoica, Concepts of dichotomy for skew-evolution semiflows on Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2 (2010), 125–140.
- M. Megan, C. Stoica, L. Buliga, On asymptotic behaviour for linear skew-evolution semiflows in Banach spaces, Carpathian J. Math., 23, 1-2, (2007), 117–125.
- C. L. Mihiţ, D. Borlea, M. Megan, On some concepts of (h, k)-splitting for skew-evolution semiflows in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 9 (2017), 186–204.
- C. L. Mihiţ, M. Megan, Integral characterizations for the (h, k)-splitting of skew-evolution semiflows, Stud. Univ. Babeş-Bolyai Math., 62 (3) (2017), 353–365.
- I. L. Popa, M. Megan, T. Ceauşu, Exponential dichotomies for linear difference systems in Banach spaces, Appl. Anal. Discr. Math., 6 (1) (2012), 140–155.
- A. L. Sasu, B. Sasu, Integral equations, dichotomy of evolution families on the half-line and applications, Integr. Equ. Oper. Theory, 66 (1) (2010), 113–140.
- C. Stoica, M. Megan, Nonuniform behaviors for skew-evolution semiflows on Banach spaces, Operator Theory Live, Theta Ser. Adv. Math., (2010), 203–211.