Abstract
In this paper, we show that there does not exist a polynomial D(2X+ 1)-quadruple {a, b, c, d}, such that 0 < a < b < c < d and deg d = deg b.
In this paper, we show that there does not exist a polynomial D(2X+ 1)-quadruple {a, b, c, d}, such that 0 < a < b < c < d and deg d = deg b.
© 2025 Zrinka Franušić, Ana Jurasić, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.