Have a personal or library account? Click to login
Numerical solution of nonlinear reaction advection-diffusion equation using the modified collocation method Cover

Numerical solution of nonlinear reaction advection-diffusion equation using the modified collocation method

By: E-M. Craciun,  S.K. Tiwari and  S. Das  
Open Access
|Jun 2025

References

  1. Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation.
  2. Dagan, G. (2012). Flow and transport in porous formations. Springer Science & Business Media.
  3. De Ghislain, M. (1986). Quantitative hydrogeology; groundwater hydrology for engineers.
  4. Durlofsky, L., & Brady, J. F. (1987). Analysis of the Brinkman equation as a model for flow in porous media. Physics of Fluids, 30(11), 3329.
  5. Richard, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318-333.
  6. Lucas, T. R. (1974). Error bounds for interpolating cubic splines under various end conditions. SIAM Journal on Numerical Analysis, 11(3), 569-584.
  7. Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of eugenics, 7(4), 355-369.
  8. Kenkre, V. M. (2004). Results from variants of the Fisher equation in the study of epidemics and bacteria. Physica A: Statistical Mechanics and its Applications, 342(1-2), 242-248.
  9. Tyson, J. J., & Fife, P. C. (1980). Target patterns in a realistic model of the BelousovZhabotinskii reaction. The Journal of Chemical Physics, 73(5), 2224-2237.
  10. Bramson, M. D. (1978). Maximal displacement of branching Brownian motion. Communications on Pure and Applied Mathematics, 31(5), 531-581.
  11. De Loubens, R., & Ramakrishnan, T. (2011). Asymptotic solution of a nonlinear advection-diffusion equation. Quarterly of applied mathematics, 69(2), 389-401.
  12. De Loubens, R., & Ramakrishnan, T. S. (2011). Analysis and computation of gravity-induced migration in porous media. Journal of fluid mechanics, 675, 60-86.
  13. Polyanin, A. D., & Zhurov, A. I. (2014). The functional constraints method: Application to non-linear delay reactiondiffusion equations with varying transfer coefficients. International Journal of Non-Linear Mechanics, 67, 267-277.
  14. Sherratt, J. A., & Marchant, B. P. (1996). Nonsharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion. Applied Mathematics Letters, 9(5), 33-38.
  15. Lu, J., Yu-Cui, G., & Shu-Jiang, X. (2007). Some new exact solutions to the BurgersFisher equation and generalized BurgersFisher equation. Chinese Physics, 16(9), 2514.
  16. Mittal, R. C., & Arora, G. (2010). Efficient numerical solution of Fisher’s equation by using B-spline method. International Journal of Computer Mathematics, 87(13), 3039-3051.
  17. Jaiswal, S., Chopra, M., & Das, S. (2019). Numerical solution of nonlinear partial differential equation for porous media using operational matrices. Mathematics and Computers in Simulation, 160, 138-154.
  18. Dwivedi, K. D., & Das, S. (2019). Numerical solution of the nonlinear diffusion equation by using non-standard/standard finite difference and Fibonacci collocation methods. The European Physical Journal Plus, 134(12), 608.
  19. Berryman, J. G., & Holland, C. J. (1978). Nonlinear diffusion problem arising in plasma physics. Physical Review Letters, 40(26), 1720.
  20. Rohila, R., & Mittal, R. (2018). Numerical study of reaction diffusion Fishers equation by fourth order cubic B-spline collocation method. Mathematical Sciences, 12, 79-89.
  21. Pudasaini, S. P., Ghosh Hajra, S., Kandel, S., & Khattri, K. B. (2018). Analytical solutions to a nonlinear diffusionadvection equation. Zeitschrift fr angewandte Mathematik und Physik, 69, 1-20.
  22. Singh, A., Dahiya, S., & Singh, S. P. (2020). A fourth-order B-spline collocation method for nonlinear BurgersFisher equation. Mathematical Sciences, 14, 75-85.
  23. Mittal, R. C., & Jain, R. K. (2013). Numerical solutions of nonlinear Fisher’s reactiondiffusion equation with modified cubic B-spline collocation method. Mathematical Sciences, 7(1), 12.
  24. Kumar, R., & Arora, S. (2022). solution of fisher Kolmogorov Petrovsky equation driven via Haar scale-3 wavelet collocation method. International Journal of Mathematical, Engineering and Management Sciences, 7(5), 717-729.
  25. Ahmad, Z., & Kothyari, U. C. (2001). Time-line cubic spline interpolation scheme for solution of advection equation. Computers & fluids, 30(6), 737-752.
  26. Siddiqi, S. S., & Arshed, S. (2014). Quintic B-spline for the numerical solution of the good Boussinesq equation. Journal of the Egyptian Mathematical Society, 22(2), 209-213.
  27. Wasim, I., Abbas, M., & Amin, M. (2018). Hybrid BSpline Collocation Method for Solving the Generalized BurgersFisher and BurgersHuxley Equations. Mathematical Problems in Engineering, 2018(1), 6143934.
  28. Cherniha, R., Serov, M., & Rassokha, I. (2008). Lie symmetries and form-preserving transformations of reactiondiffusionconvection equations. Journal of mathematical analysis and applications, 342(2), 1363-1379.
  29. Buckingham, E. (1907). Studies on the movement of soil moisture. US Dept. Agic. Bur. Soils Bull., 38.
  30. Rogers, J. R., & Fredrich, A. J. (Eds.). (2001, October). International Engineering History and Heritage: Improving Bridges to ASCE’s 150th Anniversary. American Society of Civil Engineers.
  31. Kovarik, K. (2012). Numerical models in groundwater pollution. Springer Science & Business Media.
DOI: https://doi.org/10.2478/auom-2025-0018 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 45 - 65
Submitted on: Nov 11, 2024
Accepted on: Mar 15, 2025
Published on: Jun 3, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 E-M. Craciun, S.K. Tiwari, S. Das, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.