Have a personal or library account? Click to login
On the Hilbert depth of the Hilbert function of a finitely generated graded module Cover

On the Hilbert depth of the Hilbert function of a finitely generated graded module

Open Access
|Apr 2025

References

  1. D. Bayer, D. Stillman, A criterion for detecting m-regularity, Inv. Math. 87 (1987), 1–11.
  2. S. Bălănescu, M. Cimpoeaş, C. Krattenthaler, On the Hilbert depth of monomial ideals, arXiv:2306.09450v4 (2024).
  3. S. Bălănescu, M. Cimpoeaş, On the arithmetic Hilbert depth, arXiv:2309.10521v2 (2024).
  4. S. Eliahou, M. Kervaire, Minimal resolutions of some monomial ideals, J. Alg. 129 (1990), 1–25.
  5. A. Galligo: A propos du theoreme de preparation de Weierstrass, Functions de Plusieurs Variables Complexes. Lecture Notes in Mathemathics 409, Berlin, Heidelberg, New York: Springer (1974), 543–579.
  6. I. Peeva, Graded Syzygies, Algebra and Applications, Volume 14, Springer-Verlag London Limited, 2011.
  7. J. Uliczka, Remarks on Hilbert series of graded modules over polynomial rings, Manuscripta math. 132 (2010), 159–168.
DOI: https://doi.org/10.2478/auom-2025-0003 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 49 - 64
Submitted on: Apr 25, 2024
Accepted on: Sep 4, 2024
Published on: Apr 2, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Silviu Bălănescu, Mircea Cimpoeaş, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.