Have a personal or library account? Click to login
On the Hilbert depth of the Hilbert function of a finitely generated graded module Cover

On the Hilbert depth of the Hilbert function of a finitely generated graded module

Open Access
|Apr 2025

Abstract

Let K be a field, A a standard graded K-algebra and M a finitely generated graded A-module. Inspired by our previous works, see [2] and [3], we study the invariant called Hilbert depth of hM, that is hdepth(hM)=max{ d:jk(-1)k-j(d-jk-j)hM(j)0for  all kd }, \mathrm{hdepth} \left( {{h_M}} \right) = \max \left\{ {d:\sum\limits_{j \le k} {{{\left( { - 1} \right)}^{k - j}}\left( {\matrix{ {d - j} \cr {k - j} \cr } } \right){h_M}\left( j \right) \ge 0\,\, \mathrm{for}\, \mathrm{all}\, k \le d}} \right\}, where hM (−) is the Hilbert function of M , and we prove basic results regard it. Using the theory of hypergeometric functions, we prove that hdepth(hS) = n, where S = K[x1, . . . , xn].

We show that hdepth(hS/J ) = n, if J = (f1, . . . , fd) ⊂ S is a complete intersection monomial ideal with deg(fi) ≥ 2 for all 1 ≤ id. Also, we show that hdepth(h) ≥ hdepth(hM) for any finitely generated graded S-module M, where = MS S[xn+1].

DOI: https://doi.org/10.2478/auom-2025-0003 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 49 - 64
Submitted on: Apr 25, 2024
Accepted on: Sep 4, 2024
Published on: Apr 2, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Silviu Bălănescu, Mircea Cimpoeaş, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.