Have a personal or library account? Click to login
On the existence and uniqueness of solution to Volterra equation on a time scale Cover

On the existence and uniqueness of solution to Volterra equation on a time scale

Open Access
|Dec 2019

References

  1. [1] R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 2003.
  2. [2] R. P. Agarwal, V. Otero-Espinar, K. Perera, and D. R. Vivero. Basic properties of Sobolev’s spaces on time scales. Adv. Difference Equ. pages Art. ID 38121, 14, 2006.10.1155/ADE/2006/38121
  3. [3] L. Berezansky, M. Migda, and E. Schmeidel. Some stability conditions for scalar Volterra difference equations. Opuscula Math., 36(4):459-470, 2016.10.7494/OpMath.2016.36.4.459
  4. [4] M. Bohner and A. Peterson. Dynamic equations on time scales. Birkhäuser Boston, Inc., Boston, MA, 2001.10.1007/978-1-4612-0201-1
  5. [5] M. Bohner and A. Peterson. Advances in dynamic equations on time scales. Birkhäuser Boston, Inc., Boston, MA, 200310.1007/978-0-8176-8230-9
  6. [6] I. L. D. dos Santos. On Volterra integral equations on time scales. Mediterr. J. Math., 12(2):471-480, 2015.10.1007/s00009-014-0411-4
  7. [7] P. Drábek and J. Milota. Methods of nonlinear analysis. Birkhäuser/Springer Basel AG, Basel, 2013.10.1007/978-3-0348-0387-8
  8. [8] M. Galewski and M. Koniorczyk. On a global implicit function theorem and some applications to integro-differential initial value problems. Acta Math. Hungar., 148(2):257-278, 2016.10.1007/s10474-016-0589-y
  9. [9] S. G. Georgiev. Integral equations on time scales. volume 5 of Atlantis Studies in Dynamical Systems. Atlantis Press, [Paris], 2016.
  10. [10] E. Ghahraei, S. Hosseini, and M. R. Pouryayevali. Pseudo-Jacobian and global inversion of nonsmooth mappings on Riemannian manifolds. Nonlinear Anal., 130:229-240, 2016.10.1016/j.na.2015.10.001
  11. [11] S. Hamadène. Viscosity solutions of second order integral-partial differential equations without monotonicity condition: a new result. Nonlinear Anal., 147:213-235, 2016.10.1016/j.na.2016.09.006
  12. [12] S. Hilger. Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten. 1989.
  13. [13] D. Idczak, A. Skowron, and S. Walczak. On the diffeomorphisms between Banach and Hilbert spaces. Adv. Nonlinear Stud., 12(1):89-5100, 2012.10.1515/ans-2012-0105
  14. [14] D. B. Pachpatte. Fredholm type integrodifferential equation on time scales. Electron. J. Differential Equations, pages 10, No. 140, 2010.
  15. [15] D. B. Pachpatte. Integral inequalitys for partial dynamic equations on time scales. Differential Equations, pages 7, No. 50, 2012.
  16. [16] B. P. Rynne. L2spaces and boundary value problems on time-scales. Math. Anal. Appl., 328(2):1217-1236, 2007.10.1016/j.jmaa.2006.06.008
  17. [17] K. Yosida. Functional analysis. Springer-Verlag, Berlin-New York, 1978. Grundlehren der Mathematischen Wissenschaften, Band 123.10.1007/978-3-642-96439-8
  18. [18] E. Zeidler. Nonlinear functional analysis and its applications. I. Springer-Verlag, New York, 1986.10.1007/978-1-4612-4838-5
DOI: https://doi.org/10.2478/auom-2019-0040 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 177 - 194
Submitted on: Dec 18, 2018
Accepted on: Feb 25, 2019
Published on: Dec 21, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Bartłomiej Kluczyński, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.