Have a personal or library account? Click to login
On the existence and uniqueness of solution to Volterra equation on a time scale Cover

On the existence and uniqueness of solution to Volterra equation on a time scale

Open Access
|Dec 2019

Abstract

Using a global inversion theorem we investigate properties of the following operator

V(x)():=xΔ()+0v(,τ,x,(τ))Δτ,x(0)=0,\matrix{\matrix{ V(x)( \cdot ): = {x^\Delta }( \cdot ) + \int_0^ \cdot {v\left( { \cdot ,\tau ,x,\left( \tau \right)} \right)} \Delta \tau , \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x(0) = 0, \hfill \cr}\cr {} \cr }

in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xyWΔ,01,p([0,1]𝕋,𝕉N){x_y} \in W_{\Delta ,0}^{1,p}\left( {{{[0,1]}_\mathbb{T}},{\mathbb{R}^N}} \right) to the associated integral equation

{xΔ(t)+0tv(t,τ,x(τ))Δτ=y(t)forΔ-a.e.t[0.1]𝕋,x(0)=0,\left\{ {\matrix{{{x^\Delta }(t) + \int_0^t {v\left( {t,\tau ,x\left( \tau \right)} \right)} \Delta \tau = y(t)\,\,\,for\,\Delta - a.e.\,\,\,t \in {{[0.1]}_\mathbb{T}},} \cr {x(0) = 0,} \cr } } \right.

which is considered on a suitable Sobolev space.

DOI: https://doi.org/10.2478/auom-2019-0040 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 177 - 194
Submitted on: Dec 18, 2018
Accepted on: Feb 25, 2019
Published on: Dec 21, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Bartłomiej Kluczyński, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.