Have a personal or library account? Click to login
A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator Cover

A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator

By: Chang-Jun Li and  Xiang Gao  
Open Access
|Oct 2015

References

  1. [1] S. Y. Cheng, Eigenvalue comparison and its geometric application, Math. Z. 143 (1975), 289-297.10.1007/BF01214381
  2. [2] B. Chow, P. Lu, L. Ni, Hamilton’s Ricci Flow. Lectures in Contemporary Mathematics, 3, Science Press and Graduate Studies in Mathematics, 77, American Mathematical Society (co-publication), 2006.10.1090/gsm/077
  3. [3] P. Li and S. T. Yau, Eigenvalues of a compact Riemannian manifold, AMS Proc. Symp. Pure Math. 36 (1980), 205-239.10.1090/pspum/036/573435
  4. [4] R. Schoen and S. T. Yau, Lectures on di erential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.
  5. [5] J. Q. Zhong and H. C. Yang, On the estimate of first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27 (1984), 1265-1273.
DOI: https://doi.org/10.2478/auom-2014-0038 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 129 - 140
Submitted on: Aug 1, 2012
Accepted on: Nov 1, 2013
Published on: Oct 20, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Chang-Jun Li, Xiang Gao, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.