Have a personal or library account? Click to login
A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator Cover

A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator

By: Chang-Jun Li and  Xiang Gao  
Open Access
|Oct 2015

Abstract

In this paper, we present a new proof of the upper and lower bound estimates for the first Dirichlet eigenvalue λ1D(B(p,r))$\lambda _1^D \left({B\left({p,r} \right)} \right)$ of Laplacian operator for the manifold with Ricci curvature Rc−K, by using Li-Yau’s gradient estimate for the heat equation.

DOI: https://doi.org/10.2478/auom-2014-0038 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 129 - 140
Submitted on: Aug 1, 2012
Accepted on: Nov 1, 2013
Published on: Oct 20, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Chang-Jun Li, Xiang Gao, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.