Have a personal or library account? Click to login
Spectral Properties of Nonhomogenous Differential Equations with Spectral Parameter in the Boundary Condition Cover

Spectral Properties of Nonhomogenous Differential Equations with Spectral Parameter in the Boundary Condition

By: Özkan Karaman  
Open Access
|Oct 2015

References

  1. [1] Ö. Akın and E. Bairamov, On the structure of discrete spectrum of the non-selfadjoint system of di erential equations in the first order, J. Korean Math. Soc. No 3, 32, pp. 401-413, (1995).
  2. [2] Yu. M. Berezanski, Expansion in Eigenfunctions of Selfadjoint Operators, Amer. Math., Providence R. I., (1968).
  3. [3] E. P. Dolzhenko, Boundary Value Uniqueness Theorems for Analytic Functions, Math. Notes 25 No 6, pp. 437-442, (1979).10.1007/BF01230985
  4. [4] N.B. Kerimov, A Boundary Value Problem for the Dirac System with a Spectral Parameter in the Boundary Conditions, Di erential Equations, Vol. 38, No 2, pp. 164-174, (2002).
  5. [5] E.Kır, Spectral Properties of Non-Selfadjoint System of Differential Equations, Comm. Fac.Sci. Univ. Ank. Series A1, Vol. 49, pp. 111-116, (2001).10.1501/Commua1_0000000385
  6. [6] V.E.Lyance, A Differential Operator with Spectral Singularities, I,II, Amer. Math. Soc. Trans. Ser. 2, Vol. 60, pp. 227-283, (1967).10.1090/trans2/060/07
  7. [7] M.A.Naimark, Investigation of the Spectrum and the Expansion in Eigenfunctions of a Non-Selfadjoint Operator of Second Order on a Semi-axis, Amer. Mart. Soc. Trans. Ser. 2, Vol. 16, pp. 103-193, (1960).10.1090/trans2/016/02
  8. [8] J.T.Schwartz, Some Non-Selfadjoint Operators, Comm. Pure and Appl. Math.13, pp. 609-939, (1960).10.1002/cpa.3160130405
  9. [9] E.Kır, G. Bascanbaz, C. Yanık, Spectral Properties of a Non Selfadjoint System of Di erential Equations with a Spectral Parameter in the Boundary Condition, Universidad Catolica Del Norte, Vol. 24, pp. 49-63, (2005).10.4067/S0716-09172005000100005
  10. [10] E. Bairamov, O. Cakar and A. Okay Çelebi, Quadratic Pencil of Schrödinger Operators with spectral singularities: Discrete Spectrum and Principal functions, Jour. Math. Anal. Appl. 216, (1997), 303-320.10.1006/jmaa.1997.5689
DOI: https://doi.org/10.2478/auom-2014-0036 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 109 - 120
Submitted on: Feb 1, 2013
Accepted on: Feb 1, 2014
Published on: Oct 20, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Özkan Karaman, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.