Have a personal or library account? Click to login
Spectral Properties of Nonhomogenous Differential Equations with Spectral Parameter in the Boundary Condition Cover

Spectral Properties of Nonhomogenous Differential Equations with Spectral Parameter in the Boundary Condition

By: Özkan Karaman  
Open Access
|Oct 2015

Abstract

In this paper, using the boundary properties of the analytic functions we investigate the structure of the discrete spectrum of the boundary value problem (0.1)iy1'+q1(x)y2λy1=ϕ1(x)iy2'+q2(x)y1λy2=ϕ2(x),xR+$$\matrix{\hfill {iy_1^\prime + q_1 \left(x \right)y_2 - \lambda y_1 = \varphi _1 \left(x \right)\;\;} & \hfill {} \cr \hfill {- iy_2^\prime + q_2 \left(x \right)y_1 - \lambda y_2 = \varphi _2 \left(x \right),} & \hfill {x \in R_ + } \cr }$$ and the condition (0.2)(a1λ+b1)y2(0,λ)(a2λ+b2)y1(0,λ)=0$$\left({a_1 \lambda + b_1 } \right)y_2 \left({0,\lambda } \right) - \left({a_2 \lambda + b_2 } \right)y_1 \left({0,\lambda } \right) = 0$$ where q1,q2, φ1, φ2 are complex valued functions, ak ≠ 0, bk ≠ 0, k = 1, 2 are complex constants and λ is a spectral parameter. In this article, we investigate the spectral singularities and eigenvalues of (0.1), (0.2) using the boundary uniqueness theorems of analytic functions. In particular, we prove that the boundary value problem (0.1), (0.2) has a finite number of spectral singularities and eigenvalues with finite multiplicities under the conditions, supxR+[|ϕk(x)|exp(εxδ)]<,k=1.2supxR+[|qk(x)|exp(εxδ)]<,k=1.2$$\matrix{{\mathop {\sup }\limits_{x \in R_ + } \left[ {\left| {\varphi _k \left(x \right)} \right|\exp \left({\varepsilon x^\delta } \right)} \right] < \infty ,\;\;\;k = 1.2} \hfill \cr {\mathop {\sup }\limits_{x \in R_ + } \left[ {\left| {q_k \left(x \right)} \right|\exp \left({\varepsilon x^\delta } \right)} \right] < \infty ,\;\;\;k = 1.2} \hfill \cr }$$ for some ε > 0, 12<δ<1${1 \over 2} < \delta < 1$

DOI: https://doi.org/10.2478/auom-2014-0036 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 109 - 120
Submitted on: Feb 1, 2013
Accepted on: Feb 1, 2014
Published on: Oct 20, 2015
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2015 Özkan Karaman, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.