References
- C.V. Berenguer, C. Andrade, J.A.M. Pereira, R. Perestrelo, J.S. Câmara, Current challenges in the sustainable valorisation of agri-food wastes: A Review, Processes 11 (2023) 20. Doi: 10.3390/pr11010020
- Z. Liu, T.S.P. de Souza, B. Holland, F. Dunshea, C. Barrow, H.A.R. Suleria, Valorization of food waste to produce value-added products based on its bioactive compounds, Processes 11 (2023) 840. Doi: 10.3390/pr11030840
- N.A. Sagar, S. Pareek, S. Sharma, E.M. Yahia, M.G. Lobo, Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization, Comprehensive Reviews in Food Science and Food Safety 17 (2018) 512-531. Doi: 10.1111/1541-4337.12330
- A. Patra, S. Abdullah, R.C. Pradhan, Review on the extraction of bioactive compounds and characterization of fruit industry by-products, Bioresources and Bioprocessing 9 (2022) 14. Doi: 10.1186/s40643-022-00498-3
- Y. Chang, X. Shi, F. He, T. Wu, L. Jiang, N. Normakhamatov, A. Sharipov, T. Wang, M. Wen, H.A. Aisa, Valorization of food processing waste to produce valuable polyphenolics, Journal of Agricultural and Food Chemistry 70 (2022) 8855-8870. Doi: 10.1021/acs.jafc.2c02655
- T.J. Erinle, D.I. Adewole, Fruit pomaces - their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques, Animal Nutrition 9 (2022) 357-377. Doi: 10.1016/j.aninu.2021.11
- C.M. Mnisi, G. Mhlongo, F. Manyeula, Fruit pomaces as functional ingredients in poultry nutrition: A review, Frontiers in Animal Science 3 (2022) 883988. Doi: 10.3389/fanim.2022.883988
- A. Nosalewicz, M. Maksim, M. Brzezińska, J. Siecińska, A. Siczek, M. Nosalewicz, M. Turski, M. Frąc, B. Przysucha, J. Lipiec, The use of apple pomace as a soil amendment enhances the activity of soil microorganisms and nitrogen transformations and affects crop growth, Journal of Soil Science and Plant Nutrition 21 (2021) 1831-1841. Doi: 10.1007/s42729-021-00483-3
- S. Korz, S. Sadzik, C. More, C. Buchmann, E. Richling, K. Munoz, Effect of grape pomace varieties and soil characteristics on the leaching potential of total carbon, nitrogen and polyphenols, Soil System 7 (2023) 49. Doi: 10.3390/soilsystems7020049
- J.M. Ueda, M.C. Pedrosa, S.A. Heleno, M. Carocho, I.C.F.R. Ferreira, L. Barros, Food additives from fruit and vegetable by-products and bio-residues: A comprehensive review focused on sustainability, Sustainability 14 (2022) 5212. Doi: 10.3390/su14095212
- A. Frum, C.M. Dobrea, L.L. Rus, L.I. Virchea, C. Morgovan, A.A. Chis, A.M. Arseniu, A. Butuca, F.G. Gligor, L.G. Vicas, O. Tita, C. Georgescu, Valorization of grape pomace and berries as a new and sustainable dietary supplement: Development, characterization, and antioxidant activity testing, Nutrients 14 (2022) 3065. Doi: 10.3390/nu14153065
- E.M. Suceveanu, L. Grosu, I.C. Alexa, A. Fînaru, Valorisation potential of Fetească neagră grape pomace for obtaining honeybased fortified innovative product, Scientific Study & Research - Chemistry & Chemical Engineering, Biotechnology, Food Industry 21 (2020) 243-252.
- P.E. Bran, D. Nicuţă, L. Grosu, O.I. Patriciu, I.C. Alexa, Investigation regarding the potential application of grape pomace extracts on in vitro plant growth and development, Ovidius University Annals of Chemistry 33 (2022) 135-142. Doi: 10.2478/auoc-2022-0020
- B. Lapornik, M. Prosek, A.G. Wondra, Comparison of extracts prepared from plant byproducts using different solvents and extraction time, Journal of Food Engineering 71 (2005) 214-222. Doi: 10.1016/j.jfoodeng.2004.10.036
- M.J. Jara‑Palacios, A. Santisteban, B. Gordillo, D. Hernanz, F.J. Heredia, Comparative study of red berry pomaces (blueberry, red raspberry, red currant and blackberry) as source of antioxidants and pigments, European Food Research and Technology 245 (2019) 1-9. Doi: 10.1007/s00217-018-3135-z
- V. Vorobyovа, M. Skіba, G. Vasyliev, O. Chygyrynets, Component composition and antioxidant activity of the blackcurrant (Ribes nigrum L.) and apricot pomace (Prunus armeniaca L.) extracts, Journal of Chemical Technology and Metallurgy 56 (2021) 710-719.
- B. Kruszewski, E. Boselli, Blackcurrant pomace as a rich source of anthocyanins: ultrasound-assisted extraction under different parameters, Applied Sciences 14 (2024) 821. Doi: 10.3390/app14020821
- S. Farooque, P.M. Rose, M. Benohoud, R.S. Blackburn, C.M. Rayner, Enhancing the potential exploitation of food waste: extraction, purification, and characterization of renewable specialty chemicals from blackcurrants (Ribes nigrum L.), Journal of Agricultural and Food Chemistry 66 (2018) 12265-12273. Doi: 10.1021/acs.jafc.8b04373
- S. Struck, M. Plaza, C. Turner, H. Rohm, Berry pomace - a review of processing and chemical analysis of its polyphenols, International Journal of Food Science and Technology 51 (2016) 1305-1318. Doi: 10.1111/ijfs.13112
- I. Jurevičiūtė, M. Keršienė, L. Bašinskienė, D. Leskauskaitė, I. Jasutienė, Characterization of berry pomace powders as dietary fiber-rich food ingredients with functional properties, Foods 11 (2022) 716. Doi: 10.3390/foods11050716
- A.M. Reißner, S. Al-Hamimi, A. Quiles, C. Schmidt, S. Struck, I. Hernando, C. Turner, H. Rohm, Composition and physicochemical properties of dried berry pomace, Journal of the Science of Food and Agriculture 99 (2019) 1284-1293. Doi: 10.1002/jsfa.9302
- A.E. Untea, A.G. Oancea, P.A. Vlaicu, I. Varzaru, M. Saracila, Blackcurrant (fruits, pomace, and leaves) phenolic characterization before and after in vitro digestion, free radical scavenger capacity, and antioxidant effects on iron-mediated lipid peroxidation, Foods 13 (2024) 1514. Doi: 10.3390/foods13101514
- A. Jurgoński, J. Juśkiewicz, Z. Zduńczyk, P. Matusevicius, K. Kołodziejczyk, Polyphenol-rich extract from blackcurrant pomace attenuates the intestinal tract and serum lipid changes induced by a high-fat diet in rabbits, European Journal of Nutrition 53 (2014) 1603-1613. Doi: 10.1007/s00394-014-0665-4
- A.L. Molan, Z. Liu, M. Kruger, The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats, World Journal of Microbiology Biotechnology 26 (2010) 1735-1743. Doi: 10.1007/s11274-010-0352-4
- G.A. Van Norman, Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?, JACC: Basic to Translational Science 4 (2019) 845-854. Doi: 10.1016/j.jacbts.2019.10.008
- T. Răşanu, M. Mehedinţi-Hâncu, M. Alexianu, T. Mehedinţi, E. Gheorghe, I. Damian, Carnitine deficiency, Romanian Journal of Morphology & Embryology 53 (2012) 203-206.
- D. Nicuță, L. Grosu, I.C. Alexa, A.L. Finaru, Sustainable characterization of some extracts of Origanum vulgare L. and biosafety evaluation using Allium cepa assay, Horticulturae 10 (2024) 504. Doi: 10.3390/horticulturae10050504
- E. Bonciu, P. Firbas, C.S. Fontanetti, J. Wusheng, M.C. Karaismailoğlu, D. Liu, F. Menicucci, D.S. Pesnya, A. Popescu, A.V. Romanovsky, S. Schiff, J. Ślusarczyket, C.P. de Souzaal, A. Srivastava, A. Sutan, A. Papini, An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay, Caryologia 71 (2018) 191-209. Doi: 10.1080/00087114.2018.1503496
- W.M. Dimuthu Nilmini Wijeyaratne, P.G. Minola Udayangani Wickramasinghe, Chromosomal abnormalities in Allium cepa induced by treated textile effluents: Spatial and temporal variations, Journal of Toxicology (2020) 8814196. Doi: 10.1155/2020/8814196
- W.M.D.N. Wijeyaratne, L.G.Y.J.G. Wadasinghe, Allium cepa bioassay to assess the water and sediment cytogenotoxicity in a tropical stream subjected to multiple point and nonpoint source pollutants, Journal of Toxicology (2019) 5420124. Doi: 10.1155/2019/5420124
- Y. Ouzid, M.N. Kaci-Boudiaf, A. Zeghouini, A.O. Madi, N. Smail-Saadoun, K. Houali, Antimitotic and genotoxic effect of methanolic extracts of leaves of Peganum harmala L. On the meristematic cells of Allium cepa L., Bioagro 35 (2023) 97-104. Doi: 10.51372/bioagro352.2
- G.O. Ihegboroa, A.J. Alhassanb, C.J. Ononamadua, T.A. Owolarafe, M.S. Sule, Evaluation of the biosafety potentials of methanol extracts/fractions of Tapinanthus bangwensis and Moringa oleifera leaves using Allium cepa model, Toxicology Reports 7 (2020) 671-679. Doi: 10.1016/j.toxrep.2020.05.001
- H. Remini, C. Mertz, A. Belbahi, N. Achir, M. Dornier, K. Madani, Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurized blood orange juice during storage, Food Chemistry 173 (2015) 665-673. Doi: 10.1016/j.foodchem.2014.10.069
- D. Teneva, D. Pencheva, A. Petrova, M. Ognyanov, Y. Georgiev, P. Denev, Addition of medicinal plants increases antioxidant activity, color, and anthocyanin stability of black chokeberry (Aronia melanocarpa) functional beverages, Plants 11 (2022) 243. Doi: 10.3390/plants11030243
- E. Laczkó-Zöld, A. Komlósi, T. Ülkei, E. Fogarasi, M. Croitoru, I. Fülöp, E. Domokos, R. Ştefănescu, E. Varga: Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity, Acta Biologica Hungarica 69 (2018) 156-169. Doi: 10.1556/018.69.2018.2.5
- K. Määttä, A. Kamal-Eldin, R. Törrönen, Phenolic compounds in berries of black, red, green, and white currants (Ribes sp.), Antioxidants and Redox Signaling 3 (2001) 981-993. Doi: 10.1089/152308601317203521
- S.C.A. Cobzac, D. Casoni, M. Badea, B. Balabanova, N. Markova Ruzdik, Ultraviolet-Visible (UV-VIS) spectroscopy and cluster analysis as a rapid tool for classification of medicinal plants, Studia Universitatis Babeş-Bolyai Chemia, 64 (2019) 191-203. Doi: 10.24193/Subbchem.2019.4.14
- J.L. Aleixandre-Tudo, W. du Toit, The role of UV-Visible spectroscopy for phenolic compounds quantification in winemaking, in: R.L. Solís-Oviedo, Á. de la Cruz Pech-Canul (Eds.), Frontiers and New Trends in the Science of Fermented Food and Beverages, IntechOpen, 2019. Doi: 10.5772/intechopen.79550
- S.B. Tedesco, H.D. Laughinghouse in: J.K. Srivastava (Eds.), Bioindicator of Genotoxicity: The Allium cepa test in environmental contamination, IntechOpen, 2012, pp. 137-156. Doi: 10.5772/31371
- T.A. Owolarafe, K. Salawu, G.O. Ihegboro, C.J. Ononamadu, A.J. Alhassan, A.M. Wudil, Investigation of cytotoxicity potential of different extracts of Ziziphus mauritiana (Lam) leaf Allium cepa model, Toxicology Reports 7 (2020) 816-821. Doi: 10.1016/j.toxrep.2020.06.010
- R. Raju, A.G. Paul, U.P. Aguilor, J.T. Capili, The effect of induced acid rain; Allium cepa chromosomal aberration assay, Scholars Academic Journal of Biosciences 9 (2021) 89-97. Doi: 10.36347/sajb.2021.v09i03.005
- D. Morais Leme, M.A. Marin-Morales, Allium cepa test in environmental monitoring: A review on its application, Mutation Research / Reviews in Mutation Research 682 (2009) 71-81 1383-5742. Doi: 10.1016/j.mrrev.2009.06.002
- V. Prajitha, J.E. Thoppil, Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay, South African Journal of Botany 102 (2016) 18-25. Doi: 10.1016/j.sajb.2015.06.018
- G.M. Hassan, A.A.M. Yassein, Cytogenotoxicity evaluation of water contaminated with some textile azo dyes using RAPD markers and chromosomal aberrations of onion (Allium cepa) root cells, Egyptian Journal of Genetics and Cytology 43 (2014) 39-57. Doi: 10.21608/ejgc.2014.9932
- T. Aşkin Çelik, Ö.S. Aslantürk, Evaluation of cytotoxicity and genotoxicity of Inula viscosa leaf extracts with Allium test, Journal of Biomedicine and Biotechnology (2010) 189252. Doi: 10.1155/2010/189252