Have a personal or library account? Click to login
Optimization of process factors using the Taguchi method of DOE towards the hydrodeoxygenation of acetic acid Cover

Optimization of process factors using the Taguchi method of DOE towards the hydrodeoxygenation of acetic acid

Open Access
|Sep 2020

References

  1. [1]. J. Wang, Z. Luo, J. Zhang, Q. Dang, W. Chen, Reactions of furfural and acetic acid as model compounds for bio-oil upgrading in supercritical ethanol, ICECC (2011) 1587–1592.10.1109/ICECC.2011.6067982
  2. [2]. K. Wang, D. Dayton, J. Peters, O. Mante, Reactive catalytic fast pyrolysis of biomass to produce high-quality bio-crude, Green Chem. 19 (2017) 3243-3251.10.1039/C7GC01088E
  3. [3]. R. Shakya, S. Adhikari, R. Mahadevan, E. Hassan, T. Dempster, Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannocloropsis sp., Bioresour. Technol. 252 (2018) 28-36.10.1016/j.biortech.2017.12.067
  4. [4]. S. Zhang, X. Yang, H. Zhang, C. Chu, K. Zheng, M. Ju, L. Liu, Liquefaction of Biomass and Upgrading of Bio-Oil: A Review, Molecules. 24 (2019) 2250-2279.10.3390/molecules24122250
  5. [5]. P.M. Mortensen, J.D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. Gen. 407 (2011) 1–19.10.1016/j.apcata.2011.08.046
  6. [6]. D.A. Ruddy, J.A. Schaidle, J.R.F. Iii, J. Wang, L. Moens, J.E. Hensley, Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds, Green Chem. 16 (2014) 454–490.
  7. [7]. Y.H.E. Sheu, R.G. Anthony, E.J. Soltes, Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment, Fuel Process. Technol. 19 (1988) 31–50.10.1016/0378-3820(88)90084-7
  8. [8]. T. Toyao, S.M.A.H. Siddiki, A.S. Touchy, W. Onodera, K. Kon, Y. Morita, T. Kamachi, K. Yoshizawa, K. Shimizu, TiO2 -Supported Re as a general and chemoselective heterogeneous catalyst for hydrogenation of carboxylic acids to alcohols, Chem. Eur. J. 23 (2017) 1001–1006.10.1002/chem.20160476227874230
  9. [9]. H. Wang, J. Male, Y. Wang, Recent Advances in Hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds, ACS Catal. 3 (2013) 1047–1070.10.1021/cs400069z
  10. [10]. D.D. Frey, F. Engelhardt, E.M. Greitzer, A role for “one-factor-at-a-time” experimentation in parameter design, Res. Eng. Des. 14 (2003) 65–74.10.1007/s00163-002-0026-9
  11. [11]. M. Kowalczyk, Application of Taguchi and Anova methods in selection of process parameters for surface roughness in precision turning of titanium, Adv. Manuf. Sci. Technol. 38 (2014) 21-35.
  12. [12]. A.M. Lawal, A. Hart, H. Daly, C. Hardacre, J. Wood, Kinetics of hydrogenation of acetic acid over supported platinum catalyst, Energy Fuels 33 (2019) 5551–5560.10.1021/acs.energyfuels.9b01062
  13. [13]. I.N. Tansel, S. Gülmez, M. Demetgul, Ş. Aykut, Taguchi Method–GONNS integration: Complete procedure covering from experimental design to complex optimization, Expert Syst. Appl. 38 (2011) 4780–4789.
  14. [14]. S. Athreya, D.Y.D. Venkatesh, Application of Taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation, IRJES 1 (2012) 13–19.
  15. [15]. V. Sundaramurthy, A.K. Dalai, J. Adjaye, The effect of phosphorus on hydrotreating property of NiMo/γ-Al2O3 nitride catalyst, Appl. Catal. Gen. 335 (2008) 204–210.10.1016/j.apcata.2007.11.024
  16. [16]. Z. He, X. Wang, Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid, J. Energy Chem. 22 (2013) 883–894.10.1016/S2095-4956(14)60268-0
  17. [17]. F. Zaera, The surface chemistry of metal-based hydrogenation catalysis, ACS Catal. 7 (2017) 4947–4967.10.1021/acscatal.7b01368
  18. [18]. J. Pritchard, G.A. Filonenko, R. Putten, E.J.M. Hensen, E.A. Pidko, Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions, Chem. Soc. Rev. 44 (2015) 3808–3833.
  19. [19]. S. Srivastava, G.C. Jadeja, J. Parikh, Copper-cobalt catalyzed liquid phase hydrogenation of furfural to 2-methylfuran: An optimization, kinetics and reaction mechanism study, Chem. Eng. Res. Des. 132 (2018) 313–324.
  20. [20]. Y.Ş. Yildiz, Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes, J. Hazard. Mater. 153 (2008) 194–200.10.1016/j.jhazmat.2007.08.03417875363
  21. [21]. P.K. Rakshit, R.K. Voolapalli, S. Upadhyayula, Acetic acid hydrogenation to ethanol over supported Pt-Sn catalyst: Effect of Bronsted acidity on product selectivity, Mol. Catal. 448 (2018) 78–90.
  22. [22]. H. Wan, R.V. Chaudhari, B. Subramaniam, Aqueous Phase Hydrogenation of Acetic Acid and Its Promotional Effect on p-cresol hydrodeoxygenation, Energy Fuels 27 (2013) 487–493.10.1021/ef301400c
DOI: https://doi.org/10.2478/auoc-2020-0008 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 38 - 43
Submitted on: Apr 2, 2020
Accepted on: May 22, 2020
Published on: Sep 18, 2020
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2020 Ahmed Lawal Mashi, Muhammad Sulaiman Rahama, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.