Have a personal or library account? Click to login
Effect of LED Light Source on Steviol Glycosides, Pigments, and Ascorbic Acid Concentration in Leaves of Stevia rebaudiana (Bertoni) Cover

Effect of LED Light Source on Steviol Glycosides, Pigments, and Ascorbic Acid Concentration in Leaves of Stevia rebaudiana (Bertoni)

Open Access
|Sep 2025

References

  1. Ahmed, S. R., & Mukta, S. (2017). Review on Stevia rebaudiana as a non-caloric natural sweetener producing plant. Journal of Sylhet Agricultural University, 4(1), 15-25.
  2. Ceunen, S., & Geuns, J. M. C. 2013. Influence of photoperiodism on the spatio-temporal accumulation of steviol glycosides in Stevia rebaudiana (Bertoni). Plant Science, 198, 72-82. https://doi.org/doi:10.1016/j.plantsci.2012.10.003.
  3. Ceunen, S., Werbrouck, S., & Geuns, J. M. C. (2012). Stimulation of steviol glycoside accumulation in Stevia rebaudiana by red LED light. Journal of Plant Physiology, 169, 749-752. https://doi.org/doi:10.1016/j.jplph.2012.01.006.
  4. Chutimanukul, P., Wanichananan, P., Janta, S., Toojinda, T., Darwell, C. T., & Mosaleeyanon, K. (2022). The influence of different light spectra on physiological responses, antioxidant capacity and chemical compositions in two holy basil cultivars. Scientific Reports, 12, 588. https://doi.org/doi:10.1038/s41598-021-04577-x.
  5. Dougher, T. B., & Bugbee B. (2001). Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Photochemistry Photobiology, 73, 199–207. https://doi.org/10.1562/0031-8655(2001)0730199DITROW2.0.CO2.
  6. Edwards, C. H., Rossi, M., Corpe, C. P., & Butterworth, P. J. (2016). The role of sugars and sweeteners in food, diet and health: Alternatives for the future. Trends in food Science & Technology, 56, 158-166. https://doi.org/10.1016/j.tifs.2016.07.008.
  7. Evans, J. M., Vallejo, V. A., Beaundry, R. M., & Warner, R. M. (2015). Daily light integral influences steviol glycoside biosynthesis and relative abudance of specific glycosides in stevia. HortScience, 50(10), 1479-1485. https://doi.org/10.21273/HORTSCI.50.10.1479.
  8. Fiutak, G., & Michalczyk, M. (2020). Effect of artificial light source on pigments, thiocyanates and ascorbic acid content in kale sprouts (Brassica oleracea L. var. Sabellica L.). Food Chemistry, 330, 127189. https://doi.org/10.1016/j.foodchem.2020.127189.
  9. Fiutak, G., Michalczyk, M., Filipczak-Fiutak, M., Fiedor, L., & Surówka, K. (2019). The impact of LED lighting on the yield, morphological structure and some bioactive components in alfalfa (Medicago sativa L.) sprouts. Food Chemistry, 285, 53–58. https://doi.org/10.1016/j.foodchem.2019.01.086.
  10. Geuns, J. M. C. (2003). Stevioside. Phytochemistry, 64, 913-921. http://dx.doi.org/10.1016/S0031-9422(03)00426-6.
  11. Hernández, K. V., Moreno-Romero, J., Hernández de la Torre, M., Pérez Manríquez, C., Leal, D. R., & Martínez-Garcia, J. F. (2022). Effect of light intensity on steviol glycosides production in leaves of Stevia rebaudiana plants. Phytochemistry, 194, 113027. https://doi.org/10.1016/j.phytochem.2021.113027.
  12. Kochikyan, V., Markosyan, A., Abelyan, L., Balayan, A., & Abelyan, V. (2006). Combined enzymatic modification of stevioside and rebaudioside A. Applied Biochemistry and Microbiology, 42, 31–37. https://doi.org/10.1134/S0003683806010030
  13. Lewis, W. H. (1992). Early uses of Stevia rebaudiana (Asteraceae) leaves as a sweetener in Paraguay. Economic Botany, 46, 336–337.
  14. Loi, M., Villani, A., Paciolla, F., Mulè, G., & Paciolla, C. (2021). Challenges and opportunities of light-emitting diode (LED) as key to modulate antioxidant compounds in plants. A review. Antioxidants, 10, 42. https://doi.org/10.3390/antiox10010042.
  15. Luo, Y., Peng, L., Yang, Z., Yao, S., & Song, H. (2021). The preparation of high purity of rebaudioside a and stevioside and the enrichment of rebaudioside c by subsequent twice crystallizations from natural stevia resources. Separations, 8(11), 200. https://doi.org/10.3390/separations8110200.
  16. Marcinek, K., & Krejpcio, Z. (2015). Stevia rebaudiana Bertoni – chemical composition and functional properties. Acta Scientiarum Polonorum, Technologia Alimentaria, 14(2), 145-152. https://doi.org/10.17306/J.AFS.2015.2.16.
  17. Michalczyk, M., Fiutak, G., & Tarko, T. (2019). Effect of hot water treatment of seeds on quality indicators of alfalfa sprouts. LWT - Food Science and Technology, 113, 108270, https://doi.org/10.1016/j.lwt.2019.108270.
  18. Morrow, R.C. (2008). LED Lighting in Horticulture. American Society for Horticultural Science, 43(7), 1947-1950. https://doi.org/10.21273/HORTSCI.43.7.1947
  19. Pawar, R. S., Krynitsky, A. J., & Rader, J. I. (2013). Sweeteners from plants – with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Analytical and Bioanalytical Chemistry, 405, 4397-4407. https://doi.org/10.1007/s00216-012-6693-0.
  20. Prakash, I., Campbell, M., & Chaturvedula, V. S. P. (2012). Catalytic hydrogenation of the sweet principles of Stevia rebaudiana, rebaudioside B., rebaudioside C, and rebaudioside D and sensory evaluation of their reduced derivatives. International Journal of Molecular Sciences, 13(11), 15126-15136. https://doi.org/10.3390/ijms131115126.
  21. Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., & Bautista-Aguilar, J. R. (2017). The effect of light quality on growth and development of in vitro plantlet of Stevia rebaudiana Bertoni. Sugar Tech, 19(3), 331-336. https://doi.org/10.1007/s12355-016-0459-5.
  22. Rengasamy, N., Othman, R. Y., Che, H. S., & Harikrishna, J. A. (2021). Beyond the PAR spectra: impact of light quality on the ermination, flowering, and metabolite content of Stevia rebaudiana (Bertoni). Journal of the Science of Food and Agriculture, 102(1), 299-311. https://doi.org/10.1002/jsfa.11359.
  23. Rivera-Avilez, J. A., Jarma-Orozco, A., & Pompelli, M. F. (2021). Stevia rebaudiana bertoni: The interaction of night interruption on gas exchange, flowering delay, and steviol glycosides synthesis. Horticulturae, 7(12), 543. https://doi.org/10.3390/horticulturae7120543.
  24. Rodríguez, A., Magan, N., & Medina, A. (2016). Evaluation of the risk of fungal spoilage when substituting sucrose with commercial purified Stevia glycosides in sweetened bakery products. International Journal of Food Microbiology, 231, 42-47. https://doi.org/10.1016/j.ijfoodmicro.2016.04.031.
  25. Sharma, S., Walia, S., Singh, B., & Kumar, R. (2015). Comprehensive review on agro technologies of low-calorie natural sweetener stevia (Stevia rebaudiana Bertoni): a boon to diabetic patients. Journal of the Science of Food and Agriculture, 96, 1867-1879. https://doi.org/10.1002/jsfa.7500.
  26. Singla, R., & Jaitak, V. (2016). Synthesis of rebaudioside A from stevioside and their interaction model with hTAS2R4 bitter taste receptor. Phytochemistry, 125, 106–111. https://doi.org/10.1016/j.phytochem.2016.03.004
  27. Tada, A., Ishizuki, K., Iwamura, J., Mikami, H., Hirao, Y., Fujita, I., Yamazaki, T., Akiyama H., & Kawamura, Y. (2013). Improvement of the Assay Method for Steviol Glycosides in the JECFA Specifications. American Journal of Analytical Chemistry, 4(4), 190-196. https://doi.org/doi:10.4236/ajac.2013.44024.
  28. Tavarini, S., & Angelini, L. G. (2013). Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. Journal of the Science of Food and Agriculture, 93, 2121-2129. https://doi.org/10.1002/jsfa.6016.
  29. Well, C., Frank, O., & Hofmann, T. (2013). Quantitation of sweet steviol glycosides by means of a HILIC-MS/MS-SIDA approach. Journal of Agricultural and Food Chemistry, 61, 11312-11320. https://doi.org/10.1021/jf404018g.
  30. Yoneda, Y., Shimizu, H., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2017). Effects of light intensity and photoperiod on improving steviol glycosides content in Stevia rebaudiana (Bertoni) while conserving light energy consumption. Journal of Applied Research on Medicinal and Aromatic Plants, 7, 64-73. https://doi.org/10.1016/j.jarmap.2017.06.001.
  31. Zheng, L., He, H., & Song, W. (2019). Application of Light-emitting Diodes and the Effect of Light Quality on Horticultural Crops: A Review. HortScience horts, 54(10), 1656-1661. Retrieved Oct 17, 2024, from https://doi.org/10.21273/HORTSCI14109-19
DOI: https://doi.org/10.2478/aucft-2025-0004 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 55 - 64
Submitted on: Jan 30, 2025
Accepted on: May 28, 2025
Published on: Sep 22, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Grzegorz Fiutak, Magdalena Michalczyk, Ireneusz Maciejaszek, Magda Filipczak-Fiutak, Xanyar Mohammadi, Maciej Jarzębski, Anubhav Pratapsingh, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.