Have a personal or library account? Click to login
LSTM-Based Discrimination of Date Fruit (Phoenix dactylifera L.) Based on Selected Convolutional Neural Network Features Cover

LSTM-Based Discrimination of Date Fruit (Phoenix dactylifera L.) Based on Selected Convolutional Neural Network Features

Open Access
|Feb 2025

References

  1. Abi Sen, A. A., Bahbouh, N. M., Alkhodre, A. B., Aldhawi, A. M., Aldham, F. A., & Aljabri, M. I., (2020). A classification algorithm for date fruits. In 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 235–239). IEEE.
  2. Al-Dashti, Y. A., Holt, R. R., Keen, C. L., & Hackman, R. M. (2021). Date palm fruit (Phoenix dactylifera): Effects on vascular health and future research directions. International journal of molecular sciences, 22(9), 4665.
  3. Altaheri, H., Alsulaiman, M., & Muhammad, G. (2019). Date Fruit Classification for Robotic Harvesting in a Natural Environment Using Deep Learning. IEEE Access, vol. 7, pp. 117115–117133.
  4. Alturki, A. S., Islam, M., Alsharekh, M. F., Almanee, M. S., & Ibrahim, A. H. (2020). Date fruits grading and sorting classification algorithm using colors and shape features. Int. J. Eng. Res. Technol, 13(8), 1917–1920.
  5. Aslan, M. F., Sabanci, K., Durdu, A., & Unlersen, M. F. (2022). COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization. Computers in biology and medicine, 142, 105244.
  6. Aslan, M. F., Unlersen, M. F., Sabanci, K., & Durdu, A. (2021). CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection. Applied Soft Computing, 98, 106912.
  7. Cong, Q., Feng, Z., Li, F., Xiang, Y., Rao, G., Tao, C. (2018). XA-BiLSTM: a deep learning approach for depression detection in imbalanced data. In 2018 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 1624–1627). IEEE.
  8. Faisal, M., Albogamy, F., Elgibreen, H., Algabri, M., & Alqershi, F. A. (2020). Deep learning and computer vision for estimating date fruits type, maturity level, and weight. IEEE Access, 8, 206770-206782.
  9. FAO STAT. https://www.fao.org/faostat/fr/#data/QCL (consulted by 21 October 2022).
  10. Ghnimi, S., Umer, S., Karim, A., & Kamal-Eldin, A. (2017). Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS journal, 6, 1–10.
  11. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
  12. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.
  13. Hossain, M.S., Muhammad, G., & Amin, S.U. (2016). Improving consumer satisfaction in smart cities using edge computing and caching: A case study of date fruits classification," Future Generation Computer Systems, vol. 88, pp. 333–341.
  14. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
  15. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708).
  16. Idowu, A. T., Igiehon, O. O., Adekoya, A. E., & Idowu, S. (2020). Dates palm fruits: A review of their nutritional components, bioactivities and functional food applications. AIMS Agriculture and Food, 5(4), 734–755.
  17. Kamal-Eldin, A., & Ghnimi, S. (2018). Classification of date fruit (Phoenix dactylifera, L.) based on chemometric analysis with multivariate approach. Journal of Food Measurement and Characterization, 12(2), 1020–1027.
  18. Khalid, S., Khalid, N., Khan, R. S., Ahmed, H., & Ahmad, A. (2017). A review on chemistry and pharmacology of Ajwa date fruit and pit. Trends in food science & technology, 63, 60–69.
  19. Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning proceedings 1992 (pp. 249–256). Morgan Kaufmann.
  20. Koklu, M., Kursun, R., Taspinar, Y. S., & Cinar, I. (2021). Classification of date fruits into genetic varieties using image analysis, Mathematical Problems in Engineering, 2021, 1–13.
  21. Manickavasagan, A., Essa, M. M., & Sukumar, E. (2012). Dates: production, processing, food, and medicinal values. CRC Press.
  22. Muhammad, G., (2014). Automatic date fruit classification by using local texture descriptors and shape-size features. In 2014 European Modelling Symposium, 174–179, IEEE.
  23. Muhammad, G., (2015). Date fruits classification using texture descriptors and shape-size features. Engineering Applications of Artificial Intelligence, 37, 361–367.
  24. Nasiri, A., Taheri-Garavand, A., & Zhang, Y.D. (2019). Image-based deep learning automated sorting of date fruit. Postharvest biology and technology, 153, 133–141.
  25. Noutfia, Y., & Ropelewska, E. (2023a). Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ (Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements. Agriculture, 13(1), 74.
  26. Noutfia, Y., & Ropelewska, E. (2023b). Innovative Models Built Based on Image Textures Using Traditional Machine Learning Algorithms for Distinguishing Different Varieties of Moroccan Date Palm Fruit (Phoenix dactylifera L.). Agriculture, 13(1), 26.
  27. Noutfia, Y., Alem, C., & Filali Zegzouti, Y. (2019). Assessment of physico-chemical and sensory properties of two date (Phoenix dactylifera L.) cultivars under commercial cold storage conditions. Journal of Food Processing and Preservation, 43(12), e14228.
  28. O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
  29. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62–66.
  30. Pérez-Pérez, B.D., Garcia Vazquez, J. P., Salomón-Torres, R. (2021). Evaluation of convolutional neural networks’ hyperparameters with transfer learning to determine sorting of ripe medjool dates. Agriculture, 11(2), 115.
  31. Rahmani, A. H., Aly, S. M., Ali, H., Babiker, A. Y., & Srikar, S. (2014). Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity. International journal of clinical and experimental medicine, 7(3), 483.
  32. Ropelewska, E., Cai, X., Zhang, Z., Sabanci, K., Aslan, M. F. (2022b). Benchmarking machine learning approaches to evaluate the cultivar differentiation of plum (Prunus domestica L.) kernels. Agriculture, 12(2), 285.
  33. Ropelewska, E., Sabanci, K., & Aslan, M. F. (2022a). Authentication of tomato (Solanum lycopersicum L.) cultivars using discriminative models based on texture parameters of flesh and skin images. European Food Research and Technology, 248(8), 1959–1976.
  34. Ropelewska, E., Sabanci, K., & Aslan, M.F. (2021). Discriminative power of geometric parameters of different cultivars of sour cherry pits determined using machine learning. Agriculture, 11(12), 1212.
  35. Sabanci, K., Aslan, M. F., & Durdu, A. (2020). Bread and durum wheat classification using wavelet-based image fusion. Journal of the Science of Food and Agriculture, 100(15), 5577–5585.
  36. Sabanci, K., Aslan, M. F., Ropelewska, E., Unlersen, M. F., & Durdu, A. (2022). A novel convolutional-recurrent hybrid network for sunn pest–damaged wheat grain detection. Food Analytical Methods, 15(6), 1748–1760.
  37. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510–4520).
  38. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9).
  39. Thareja, G., Mathew, S., Mathew, L. S., Mohamoud, Y. A., Suhre, K., & Malek, J. A. (2018). Genotypingby-sequencing identifies date palm clone preference in agronomics of the State of Qatar. PLoS one, 13(12), e0207299.
  40. Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., & Moore, J. H. (2018). Relief-based feature selection: Introduction and review. Journal of biomedical informatics, 85, 189–203.
  41. Zielinska, M., Ropelewska, E., & Markowski, M. (2017). Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon). LWT-Food Science and Technology, 85, 204–211.
DOI: https://doi.org/10.2478/aucft-2024-0015 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 183 - 194
Submitted on: Sep 18, 2024
|
Accepted on: Dec 20, 2024
|
Published on: Feb 15, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Younés Noutfia, Kadir Sabanci, Muhammet Fatih Aslan, Ewa Ropelewska, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.