Have a personal or library account? Click to login
Effect of Ozone Gas on Selected Microbiological, Chemical, Electrical and Organoleptic Properties of Craft Wheat Beers Enriched Japanese Quince Fruit (Chaenomeles L.) Cover

Effect of Ozone Gas on Selected Microbiological, Chemical, Electrical and Organoleptic Properties of Craft Wheat Beers Enriched Japanese Quince Fruit (Chaenomeles L.)

Open Access
|Sep 2024

References

  1. Adadi P.; Kovaleva E.G.; Glukhareva T.V.; Shatunova S.A.; Petrov A.S. 2017. Production and analysis of non-traditional beer supplemented with sea buckthorn. Agron. Res. 15, 1831–1845. https://doi.org/10.15159/AR.17.060
  2. Almaguer C.; Schonberger C.; Gastl M.; Arendt E.K.; Becker T. 2014. Humulus lupulus—A story that begs to be told. A review. J. Inst. Brew. 120, 289–314. https://doi.org/10.1002/jib.160
  3. Angelino P. D.; Golden A.; Mount J. R. 2003. Effect of Ozone Treatment on Quality of Orange Juice. IFT Annual Meeting Book Abstract, No. 76C–2 (Chicago, IL: Institute of Food Technologists)
  4. Baigts-Allende D.K.; Pérez-Alva A.; Ramírez-Rodrigues M.A.; Palacios A.; Ramírez-Rodrigues M.M. 2021. A comparative study of polyphenolic and amino acids profiles of commercial fruit beers. J of Food Comp and Analysis. 100, 103921. DOI: 10.1016/j.jfca.2021.103921
  5. Belcar J.; Sekutowski T. R.; Zardzewiały M.; Gorzelany J. 2021. Effect of malting process duration on malting losses and quality of wheat malts. Acta Universitatis Cibiniensis Series E: Food Technology. 25(2); 221 – 232. https://doi.org/10.2478/aucft-2021-0020
  6. Bogdan P.; Kordialik-Bogacka, E. 2016. Antioxidant activity of beers produced with the addition of unmalted quinoa and amaranth. FOOD. Science. Technology. Quality. 3 (106), 118-126. DOI: 10.15193/zntj/2016/106/130 (in Polish)
  7. Byczkiewicz S.; Kobus-Cisowska J.; Szulc P.; Telichowska A.; Szczepaniak O.; Dziedzinski M. 2019. Japanese quince (Chaenomeles japonica L.) as a raw material with health-promoting properties - current state of knowledge. Agricultural Horticultural Forest Technology, 5, 22-25. (in Polish)
  8. Byeon Y.S.; Lim S.-T.; Kim H.-J.; Kwak H. S.; Kim S.S. 2021. Quality Characteristcs of Wheat Malts with Different Country of Origin and Their Effect on Beer Brewing. J Food Quality. 2146620, https://doi.org/10.1155/2021/2146620
  9. Cao S.; Meng L.; Ma C.; Ba L.; Lei J.; Ji N.; Wang R. 2022. Effect of ozone treatment on physicochemical parameters and ethylene biosynthesis inhibition in Guichang Kiwifruit. Food Science and Technology (Campinas), 42, e64820. http://dx.doi.org/10.1590/fst.64820.
  10. Carbonell-Barrachina Á. A.; Szychowski P.J.; Vásquez M.V.; Hernández F.; Wojdyło A. 2015. Technological aspects as the main impact on quality of quince liquors. Food Chemistry, 167, 387 – 395. doi: 10.1016/j.foodchem.2014.07.012.
  11. Cirak C.; Radusiene J. 2019. Factors affecting the variation of bioactive compounds in Hypericum species. Biol Futur. 70(3), 198-209. doi: 10.1556/019.70.2019.25.
  12. Ditrych M.; Kordialik-Bogacka E.; Czyżowska A. 2015. Antiradical and Reducting Potential of Commercial Beer. Czech J. Food Sci. 33(3), 261-266. https://doi.org/10.17221/658/2014-CJFS
  13. Du H.; Wu J.; Li H. 2013. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activites assessment. Food Chem., 141, 4260-4268. https://doi.org/10.1016/j.foodchem.2013.06.109
  14. Dugulin C.; Muñoz L.M.; Buyse J.; Bolat I.; De Rouck G.; Cook D. 2020. Brewing with 100% green malt - process development and key quality indicators. Journal of the Institute of Brewing. 126, 343-353. 10.1002/jib.620.
  15. Faltermaier A.; Waters D.; Becker T.; Arendt E.; Gastl M. 2014. Common wheat (Triticum aestivum L.) and its use as a brewing cereal – a review. J. Inst. Brew. 120; 1-15. https://doi.org/10.1002/jib.107
  16. Gasiński A.; Kawa-Rygielska J.; Szumny A.; Czubaszek A.; Gąsior J.; Pietrzak W. 2020. Volatile Compounds Content Physicochemical Parametrers and Antioxidant Activity of Beers with Addition of Mango Fruit (Mangifera Indica). Molecules. 25(13), 3033. https://doi.org/10.3390/molecules25133033
  17. Gibson K.E.; Almeida G.; Jones S.; Wright K.; Lee J.A. 2019. Inactivation of bacteria on fresh produce by batch wash ozone sanitation. Food Control. 106, 106747.
  18. Gorzelany J.; Hlaváčová Z.; Haulíková A.; Hlaváč P.; Belcar J. 2023. The possibility of using rheological and electrical properties to determine the quality of craft wheat beers. Acta Universitatis Cibiniensis Series E: Food Technology, 27(1), 103-114. DOI: 10.2478/aucft-2023-0009
  19. Gorzelany J.; Michałowska D.; Pluta S.; Kapusta I.; Belcar J. 2022. Effect of Ozone-Treated or Untreated Saskatoon Fruits (Amelanchier alnifolia Nutt.) Applied as an Additive on the Quality and Antioxidant Activity of Fruit Beers. Molecules, 27, 1976. https://doi.org/10.3390/molecules27061976
  20. Gutarowska B.; Szulc J.; Jastrząbek K.; Kręgiel D.; Śmigielski K.; Cieciura-Włoch W.; Mroczyńska-Florczak M.; Liszkowska W.; Rygała A.; Berłowska J. 2023. Effectiveness of Ozonation for Improving the Microbiological Safety of Fresh-Cut Parsley (Petroselinum crispum) Leaves. Appl. Sci. 13, 8946. https://doi.org/10.3390/app13158946
  21. Habschied K.; Košir I.J.; Krstanović V.; Kumrić G.; Mastanjević K. 2021. Beer Polyphenols – Bitterness, Astrigency, and Off-Flavors. Beverages. 7, 38. https://doi.org/10.3390/beverages7020038
  22. Jagodziński J.; Dziągow S.; Krzywonos M. 2016. Microbiological stability of home unpasteurized beers. Acta Sci. Pol. Biotechnol. 15, 15–24.
  23. Jakuos L.; Óré-Sütő B.V. 2022. Initial microbiological experience in small-scale fruit beer product development. J. Food Investig. 68, 3877–3887.
  24. Khalil H. 2019. Effect of ozone application on postharvest quality and microbiological state of “Zaghloul” date palm fruits. J. Plant Prod. 7, 43–51. DOI: 10.21608/ejchem.2022.133146.5917
  25. Lin F.; Kaiyu L.; Shufeng M.A.; Wang F.; Li J.; Wang L. 2023. Effects of ozone treatment on storage quality and antioxidant capacity of fresh-cut water fennel (Oenanthe javanica). Food Science and Technology. 43. 10.1590/fst.108422.
  26. Ma X.; Yang W.; Kallio H.; Yang B. 2022. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides). Critical Reviews in Food Science and Nutrition, 62, 3798–3816. DOI: 10.1080/10408398.2020.1869921
  27. Martínez A.; Vegara S.; Martí N.; Valero M.; Saura D. 2017. Physicochemical characterization of special persimmon fruit beers using bohemian pilsner malt as a base. J Inst Brew. 123, 319-327. https://doi.org/10.1002/jib.434
  28. Mikyška A.; Dušek M., Slabý M. 2019. How does fermentation, filtration and stabilization of beer affect polyphenols with health benefits. Kvas. Prum. 65, 120-126. https://doi.org/10.18832/kp2019.65.120.
  29. Mikyška A.; Dušek M. 2019. How wort boiling process affect flawonoid polyphenols in beer. Kvasny prumysl. 65; 192-200. DOI: 10.18832/kp2019.65.192
  30. Nahorska A.; Dzwoniarska M.; Thiem B. 2014. Japanese quince fruits (Chaenomeles japonica (Thunb.) Lindi. ex Spach) are a source of biologically active substances. Advances in Phytotherapy, 239-246.
  31. Nardini M. 2023. An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends. Molecules, 28, 3221. https://doi.org/10.3390/molecules28073221
  32. Nardini M.; Garaguso I. 2020. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chemistry, 305; 125437. doi: 10.1016/j.foodchem.2019.125437.
  33. Nonjabulo L.; Bambalele A. M.; Lembe S. M.; Samson Z. T. 2023. Postharvest effect of gaseous ozone on physicochemical quality, carotenoid content and shelf-life of mango fruit. Cogent Food & Agriculture, 9:1. DOI: 10.1080/23311932.2023.2247678
  34. Ong M. K.; Ali A. 2015. Antifungal Action of Ozone against Colletotrichum Gloeosporioides and Control of Papaya Anthracnose. Postharvest Biology and Technology, 100, 113 . doi:10.1016/j.postharvbio.2014.09.023. DOI: 10.1016/j.postharvbio.2014.09.023
  35. Palou L.; Smilanick J.L.; Crisosto C.H.; Mansour M. 2001. Effect of gaseous ozone exposure on the development of green and blue molds on cold stored citrus fruit. Plant Dis. 85, 632–638.
  36. Panou A. A.; Akrida-Demertzi K.; Demertzis P.; Riganakos K. A. 2021. Effect of Gaseous Ozone and Heat Treatment on Quality and Shelf Life of Fresh Strawberries during Cold Storage. International Journal of Fruit Science, 21:1, 218-231, DOI: 10.1080/15538362.2020.1866735
  37. Paulikienė S.; Venslauskas K.; Raila A.; Žvirdauskienė R.; Naujokienė V. 2020. The influence of ozone technology on reduction of carrot loss and environmental IMPACT. Journal of Cleaner Production. 244, 118734, https://doi.org/10.1016/j.jclepro.2019.118734.
  38. Piechowiak T.; Skóra B.; Balawejder M. 2020. Ozone treatment induces changes in antioxidative defense system in blueberry fruit during storage. Food and Bioprocess Technology, 13(7), 1240-1245. https://doi.org/10.1007/s11947-020-02450-9
  39. Piechowiak T.; Antos P.; Kosowski P.; Skrobacz K.; Józefczyk R.; Balawejder M. 2019. Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agricultural and Food Science, 28(1), 35–44. https://doi.org/10.23986/afsci.70291
  40. Pinto L.; Palma A.; Cefola M.; Pace B.; D’Aquino S.; Carboni C.; Baruzzi F. 2020. Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packaging and Shelf Life, 26, 1-10. http://dx.doi.org/10.1016/j.fpsl.2020.100573.
  41. Pretell-Vásquez C.; Márquez-Villacorta L.; Siche R.; Hayayumi-Valdivia M. 2022. Optimization of ozone concentration and storage time in green asparagus (Asparagus officinalis L.) using response surface methodology. Vitae, 28, 3. https://doi.org/10.17533/udea.vitae.v28n3a346752
  42. Radonjič S.; Maraš V.; Raičevič J.; Košmerl T. 2020. Wine or Beer? Comparison, Changes and Improvement of Polyphenolic Compounds during Technological Phases. Molecules, 25, 4960. https://doi.org/10.3390/molecules25214960
  43. Ritter S.; Doelle K.; Bargen M.; Piatkowski J. 2016. Fruits in Craft Beer: A Study to Evaluate the Impact of Fruits on the pH in the Brewing Process and the Breweries Waste Water. Advances in Research. 8, 1-8. 10.9734/AIR/2016/30228.
  44. Rumpunen K. 2002. Chaenomeles: Potential new fruit crop for northern Europe. Trends in New Crops and New Uses. Alexandria, USA:ASHA Press, 385-392.
  45. Susan A.; Sasmita E.; Yulianto E.; Arianto F.; Restiwijaya M.; Kinandana A.; Nur M. 2018. Ozone application to extend shelf life of vegetables by microbial growth inhibition. MATEC Web of Conferences. 197. 02004. 10.1051/matecconf/201819702004.
  46. Tarko T.; Duda-Chodak A.; Pogon P. 2010. Characteristics of Japanese quince and dogwood fruit. Food. Science. Technology. Quality. 6(73), 100-108. (in Polish)
  47. Wang T.; Yun J.; Zhang Y.; Bi Y.; Zhao F.; Niu Y. 2021. Effects of ozone fumigation combined with nano-film packaging on the postharvest storage quality and antioxidant capacity of button mushrooms (Agaricus bisporus). Postharvest Biology and Technology, 176, 111501. http://dx.doi.org/10.1016/j.postharvbio.2021.111501.
  48. Wyk V.S.; Sylva F.V.M. 2016. Impedance technology reduces the enumeration time of Brettanomyces yeast during beer fermentation. Biotechnology Journal, 11, 1667–1672. DOI 10.1002/biot.201600497.
  49. Viejo G.; Sigfredo C.; Sigfredo F.; Damir T.; Amruta G.; Frank D. 2019. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 293, 479–485. https://doi.org/10.1016/j.foodchem.2019.04.114
  50. Xu D.Y.; Shi M.; Jia B.; Yan Z. C.; Gao L. P.; Guan W. Q.; Wang Q.; Zuo J. H. 2019. Effect of ozone on the activity of antioxidant and chlorophyll‐degrading enzymes during postharvest storage of coriander (Coriandrum sativum L.). Journal of Food Processing and Preservation, 43(8). http://dx.doi.org/10.1111/jfpp.14020.
  51. Yang Q.; Tu J.; Chen M.; Gong X. 2021. Discrimination of Fruit Beer Based on Fingerprints by Static Headspace-Gas Chromatography-Ion Mobility Spectrometry. Journal of the American Society of Brewing Chemists. 1946654. DOI: 10.1080/03610470.2021.1946654
  52. Yaseen T.; D’Onghia A.; Ricelli A. 2013. The use of ozone in strawberry post-harvest conservation. IOBCWPRS Bull. 86, 143–148.
  53. Zapata P.J.; Martinez-Espla A.; Girones-Vilaplana A.; Santos-Lax D.; Noguera-Artiaga L.; Carbonell-Barrachina A.A. 2019. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT-Food Sci. Technol. 103, 139–146. DOI: 10.1016/j.lwt.2019.01.002
  54. Zardzewiały M.; Belcar J.; Gorzelany J. 2023. The Use of Gaseous Ozone to Reduce the Microbial Load of Rhubarb (Rheum L.) Petioles as an Additive to Craft Wheat Beers. Acta Universitatis Cibiniensis. Series E: Food Technology, 27, 2, 231-242. https://doi.org/10.2478/aucft-2023-0019
  55. Zhang R.; Li S.; Zhu Z.; He J. 2019. Recent advances in valorization of Chaenomeles fruit: A review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities, Trends in Food Science & Technology, 91, 467-482. https://doi.org/10.1016/j.tifs.2019.07.012
  56. Zhang M.; Zhao R.; Zhou S.; Liu W.; Liang Y.; Zhao Z. 2018. Chemical characterization and evaluation of the antioxidant Chaenomeles fruits by an improved HPLC-TOF/MS coupled to an online DPPH-HPLC method. Journal of Environmental Science and Health, PartC, 36(1), 43-62. doi: 10.1080/10590501.2017.1418814
  57. Zhang L.; Li S. 2009. Effects of micronization on properties of Chaenomeles sinensis (Thouin) Koehne fruit powder. Innovative Food Science & Emerging Technologies, 10 (4), 633-637. https://doi.org/10.1016/j.ifset.2009.05.010
  58. Zhang L. K.; Lu Z. X.; Yu Z. F.; Gao X. 2005. Preservation of fresh-cut celery by treatment of ozonated water. Food Control, 16(3), 279-283. http://dx.doi.org/10.1016/j.foodcont.2004.03.007.
  59. Zhao X.; Yin Y.; Fang W.; Yang Z. 2023. What happens when fruit married with beer? International Journal of Gastronomy and Food Science, 2023, 32. https://doi.org/10.1016/j.ijgfs.2023.100716.
  60. Zorlugenç B.; Kiroğlu Zorlugenç F.; Oztekin S.; Evliya I.N. 2008. The influence of gaseous ozone and ozonated water on microbial flora and degradation of aflatoxin B (1) in dried figs. Food Chem. Toxicol. 46, 3593–3597. doi: 10.1016/j.fct.2008.09.003.
  61. Żurek N.; Karatsai O.; Rędowicz M. J.; Kapusta I. 2021. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules. 26, 9, 2656. DOI: 10.3390/molecules26092656
DOI: https://doi.org/10.2478/aucft-2024-0007 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 79 - 92
Submitted on: Apr 24, 2024
Accepted on: Aug 9, 2024
Published on: Sep 26, 2024
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Józef Gorzelany, Miłosz Zardzewiały, Pavol Findura, Ireneusz Kapusta, Katarzyna Pentoś, Justyna Belcar, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.