Have a personal or library account? Click to login
Effect of Substrate Composition on Yield and Antioxidative Activity of Exopolysaccharides From Lactobacillus fermentum B62 Cover

Effect of Substrate Composition on Yield and Antioxidative Activity of Exopolysaccharides From Lactobacillus fermentum B62

Open Access
|Dec 2022

References

  1. 1. Ale, E. C., Perezlindo, M. J., Burns, P., Tabacman, E., Reinheimer, J. A., & Binetti, A. G. (2016). Exopolysaccharide from Lactobacillus fermentum Lf2 and its functional characterization as a yogurt additive. Journal of Dairy Research, 83(4), 487-492. DOI: 10.1017/s0022029916000571.
  2. 2. Andrew, M., & Jayaraman, G. (2019). Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydrate Research, 487. DOI: 10.1016/j.carres.2019.107881.31805426
  3. 3. Caggianiello, G., Kleer Eb Ezem, M., & Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied Microbiology & Biotechnology, 100(9), 3877-3886. DOI: 10.1007/s00253-016-7471-2.27020288
  4. 4. Chen, F., Zhang, Q., Fei, S., Gu, H., & Yang, L. (2017). Optimization of ultrasonic circulating extraction of samara oil from acer saccharum using combination of plackett–burman design and box–behnken design. Ultrasonics Sonochemistry, 35(Pt A),161-175. DOI: 10.1016/j.ultsonch.2016.09.015.27671519
  5. 5. Chen, L., Gu, Q., & Zhou, T. (2022). Statistical Optimization of Novel Medium to Maximize the Yield of Exopolysaccharide From Lacticaseibacillus rhamnosus ZFM216 and Its Immunomodulatory Activity. Frontiers in nutrition, 9. DOI:10.3389/fnut.2022.924495920147935719166
  6. 6. Cheng, X., Huang, L., & Li, K. T. (2019). Antioxidant activity changes of exopolysaccharides with different carbon sources from lactobacillus plantarum lpc-1 and its metabolomic analysis. World Journal of Microbiology & Biotechnology, 35(5), 68. DOI: 10.1007/s11274-019-2645-6.31011829
  7. 7. Chunping, X. U., Jinwei, Y. U., Zhao, S., Shungshung, W. U., Peixin, H. E., & Jia, X., et al. (2017). Effect of carbon source on production, characterization and bioactivity of exopolysaccharide produced by phellinus vaninii Ljup. Anais da Academia Brasileira de Ciências, 89(3 Suppl), 2033-2041. DOI: 10.1590/0001-3765201720150786.29044312
  8. 8. Daba, G. M., Elnahas, M. O., & Elkhateeb, W. A. (2021). Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules, 173(2), 1-11. DOI: 10.1016/j.ijbiomac.2021.01.110.33482209
  9. 9. Doleyres Y, Schaub L, Lacroix C. (2005). Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties. J Dairy Sci, 88(12), 4146-4156. DOI: 10.3168/jds.S0022-0302(05)73100-3.16291605
  10. 10. Dong, Y., Shu, G., Dai, C., Zhang, M., & Wan, H. . (2020). Effect of amino acids on the production of biosurfactant by pediococcus acidilactici f70. Acta Universitatis Cibiniensis Series E Food Technology, 24(1), 129-138. DOI: 10.2478/aucft-2020-0011.
  11. 11. Dubios, M., KA Gilles, Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugar and related substances. Analytical Chemistry, 28, 250-256.10.1021/ac60111a017
  12. 12. Finore, I., Donato, P., Mastascusa, V., Nicolaus, B., & Poli, A. (2014). Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Marine Drugs, 12(5), 3005-3024. DOI: 10.3390/md12053005.405232824857960
  13. 13. Imran, M. M., Reehana, N., Jayaraj, K. A., Ahamed, A. P., D Dhanasekaran, & Thajuddin, N., et al. (2016). Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules, 93, 731-745. DOI: 10.1016/j.ijbiomac.2016.09.007.27601132
  14. 14. Matthysse, A. G. (2018). Exopolysaccharides of agrobacterium tumefaciens. Current topics in microbiology and immunology, 418: 111-141. DOI: 10.1007/82_2018_100.29992358
  15. 15. Mdk, F., Tokatl, M., Elmac, S. B., & Zelik, F. (2020). Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Archives of Microbiology, 202(4), 875-885. DOI: 10.1007/s00203-019-01799-6.31894393
  16. 16. Ms, A., At, A., Ds, B., Ana, C., & Maa, C. (2020). Characteristics and function of an extracellular polysaccharide from a green alga Parachlorella. Carbohydrate Polymers, 254. DOI: 10.1016/j.carbpol.2020.117252.33357848
  17. 17. Plackett, R. L. (1946). The design of optimum multifactor experiments. Biometrika, 33.10.1093/biomet/33.4.305
  18. 18. Pourjafar, H., Ansari, F., Sadeghi, A., Samakkhah, S. A., & Jafari, S. M. (2022). Functional and health-promoting properties of probiotics’ exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr, undefined, 1-32. DOI: 10.1080/10408398.2022.2047883.35266799
  19. 19. Qi, L., Huang, X., Yang, D., Si, T., & Pan, S. (2016). Yield improvement of exopolysaccharides by screening of the Lactobacillus acidophilus ATCC and optimization of the fermentation and extraction conditions. Excli Journal, 15, 119-133. DOI: 10.17179/excli2015-356.483475327103893
  20. 20. Ricciardi, A., Parente, E., Crudele, M. A., Zanetti, F., Scolari, G., & Mannazzu, I. (2002). Exopolysaccharide production by streptococcus thermophilus SY: production and preliminary characterization of the polymer. Journal of Applied Microbiology, 92(2), 297-306. DOI: 10.1046/j.1365-2672.2002.01487.x.11849358
  21. 21. Saadat, Y. R., Khosroushahi, A. Y., & Gargari, B. P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79-89. DOI: 10.1016/j.carbpol.2019.04.025.31079688
  22. 22. Saadat, Y. R., Khosroushahi, A. Y., & Gargari, B. P. (2021). Yeast exopolysaccharides and their physiological functions. Folia Microbiologica, 66(2), 171-182. DOI: 10.1007/s12223-021-00856-2.33604744
  23. 23. Savadogo, A., Ouattara, C., Savadogo, P. W., Barro, N., Ouattara, A. S., & Traore, A. S. (2004). Identification of exopolysaccharides-producing lactic acid bacteria from burkina faso fermented milk samples. African Journal of Biotechnology, 3(3), 189-194. DOI: 10.5897/AJB2004.000-2034.
  24. 24. Shangguan, W., Chen, H., Li, Y., Wang, Z., & Meng, J. (2019). Screening and identification of new types of exopolysaccharides-producing lactic acid in the inner mongolia dairy products. Acta Universitatis Cibiniensis Series E Food Technology, 23(2), 75-84. DOI: 10.2478/aucft-2019-0010.
  25. 25. Suryawanshi, N., Naik, S., & Eswari, J. S. (2019). Extraction and optimization of exopolysaccharide from lactobacillus sp. using response surface methodology and artificial neural networks. Preparative Biochemistry & Biotechnology, 49(10), 987-996. DOI: 10.1080/10826068.2019.1645695.31361180
  26. 26. Tiwari, O. N., Sasmal, S., Kataria, A. K., & Devi, I. (2020). Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech, 10(5), 221. DOI: 10.1007/s13205-020-02200-w.718875032355595
  27. 27. Wang Q, Sun Y, Yang B, Wang Z, Liu Y, Cao Q, Sun X, Kuang H. (2014). Optimization of polysaccharides extraction from seeds of Pharbitis nil and its anti-oxidant activity. Carbohydrate Polymers, 102, 460-466. DOI: 10.1016/j.carbpol.2013.11.068.24507306
  28. 28. Wang Xin., Shao Chunge., Liu Lian., Guo Xing., Xu Yuanmei., Lü Xin.(2017). Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int J Biol Macromol, 103(undefined), 1173-1184. DOI:10.1016/j.ijbiomac.2017.05.11828551435
  29. 29. Wang, Z. F., Han, Z., Wang, M., Ma, Y., & Zhang, W. (2020). Toxicological effects of enrofloxacin and its removal by freshwater micro-green algae Dictyosphaerium sp. Environmental science, 41(6), 2688-2697. DOI: 10.13227/j.hjkx.201912227.32608784
  30. 30. Xin, W., Shao, C., Lian, L., Xing, G., Xu, Y., & Xin, L. (2017). Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum kx041. International Journal of Biological Macromolecules, 103, 1173-1184. DOI: 10.1016/j.ijbiomac.2017.05.118.
  31. 31. Yang, M., Zhu, Y., Li, Y., Bao, J., Fan, X., & Qu, Y., et al. (2016). Production and optimization of curdlan produced by Pseudomonas sp. ql212. International Journal of Biological Macromolecules, 89, 25-34. DOI: 10.1016/j.ijbiomac.2016.04.027.27086290
  32. 32. Yang, Zhou, Yanhua, Cui, Xiaojun, & Qu. (2019). Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: a review. Carbohydrate Polymer, 207, 317-332. DOI: 10.1016/j.carbpol.2018.11.093.30600013
  33. 33. Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., & Zeng, X., et al. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum c88. International Journal of Biological Macromolecules, 54, 270-275. DOI: 10.1016/j.ijbiomac.2012.12.037.23274679
  34. 34. Zhang, L., Zhao, B., Liu, C. J., & Yang, E. (2020). Optimization of biosynthesis conditions for the production of exopolysaccharides by Lactobacillus plantarum SP8 and the exopolysaccharides antioxidant activity test. Indian Journal of Microbiology, 60(3), 334-345. DOI:10.1007/s12088-020-00865-8.732995532647393
DOI: https://doi.org/10.2478/aucft-2022-0024 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 303 - 314
Submitted on: Oct 19, 2022
Accepted on: Dec 12, 2022
Published on: Dec 30, 2022
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Gengdian Liu, Guowei Shu, Huan Lei, Qi Zhang, Xiuxiu Cui, Chunji Dai, Yilin Li, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.