Have a personal or library account? Click to login

Simple Method for Fatty Acids Determination in Food, Superfood and Spice Samples by GC-MS Technique

Open Access
|Dec 2022

References

  1. 1. AOAC Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals (2013), AOAC Int. 1–38.
  2. 2. Barison, A., Da Silva, C.W.P., Campos, F.R., Simonelli, F., Lenz, C.A. & Ferreira. A.G. (2010). A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn. Reson. Chem., 48(8), 642–650. DOI: 10.1002/mrc.2629.20589730
  3. 3. Bartošová, A. & Štefko. T. (2017). Gas Chromatographic Determination of Fatty Acids in Oils with Regard to the Assessment of Fire Hazard. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 25, 73–81. DOI: 10.1515/rput-2017-0009.
  4. 4. Blumhorst, M.R., Venkitasubramanian, P. & Collison, M.W. (2011). Direct determination of glycidyl esters of fatty acids in vegetable Oils by LC-MS. JAOCS. J. Am. Oil Chem. Soc., 88(9), 1275–1283. DOI: 10.1007/s11746-011-1873-1.314332321909156
  5. 5. Carvalho, M.S., Mendonça, M.A., Pinho, D.M.M., Resck, I.S. & Suarez, P.A.Z. (2012). Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID. J. Braz. Chem. Soc., 23(4), 763–769. DOI: 10.1590/S0103-50532012000400023.
  6. 6. Council of Europe (2017). European Pharmacopoeia 9th edition.
  7. 7. Freitas, H.R. (2017). Chlorella vulgaris as a Source of Essential Fatty Acids and Micronutrients: A Brief Commentary. The Open Plant Science Journal, 10(1), 92-99. DOI: 10.2174/1874294701710010092.
  8. 8. Khoury, S., Canlet, C., Lacroix, M.Z., Berdeaux, O., Jouhet, J. & Bertrand-Michel, J. (2018). Quantification of lipids: Model. reality. and compromise. Biomolecules, 8(4), 174. DOI: 10.3390/biom8040174.631682830558107
  9. 9. Klug, L. & Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS Yeast Res., 14(3), 369–388. DOI: 10.1111/1567-1364.12141.24520995
  10. 10. Marcone, M.F., Wang, S., Albabish, W., Nie, S., Somnarain, D. & Hill. A. (2013). Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int., 51(2), 729–747. DOI: 10.1016/j.foodres.2012.12.046.
  11. 11. Martin, C.E., Oh, C.S. & Jiang, Y. (2007). Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 1771(3), 271–285. DOI: 10.1016/j.bbalip.2006.06.010.16920014
  12. 12. Miranda, A.M., Castilho-Almeida, E.W., Martins Ferreira, E.H., Moreira, G.F., Achete, C.A., Armond, R.A.S.Z., Dos Santos, H.F. & Jorio, A. (2014). Line shape analysis of the Raman spectra from pure and mixed biofuels esters compounds. Fuel, 115, 118–125. DOI: 10.1016/j.fuel.2013.06.038.
  13. 13. Nyiri, Z., Novák, M., Bodai, Z., Petrovics, N., Eke, Z. (2017). Determination of polycyclic aromatic hydrocarbons in infant formula using solid state urea clathrate formation with gas chromatography – tandem mass spectrometry. Talanta, 174, 214–220. DOI: 10.1016/j.talanta.2017.05.065.28738571
  14. 14. Petrović, M., Kezić, N. & Bolanča. V. (2010). Optimization of the GC method for routine analysis of the fatty acid profile in several food samples. Food Chem, 122(1), 285–291. DOI: 10.1016/j.foodchem.2010.02.018.
  15. 15. Potocki, L., Baran, A., Oklejewicz, B., Szpyrka, E., Podbielska, M. & Schwarzbacherová, V. (2020). Synthetic Pesticides Used in Agricultural Production Promote Genetic Instability and Metabolic Variability in Candida spp. Genes, 11(8), 848. DOI: 10.3390/genes11080848.746377032722318
  16. 16. Ren, J., Mozurkewich, E.; Sen, A., Vahratian, A., Ferreri, T., Morse, A. & Djuric, Z. (2013). Total Serum Fatty Acid Analysis by GC-MS: Assay Validation and Serum Sample Stability. Curr. Pharm. Anal., 9(4), 331–339. DOI: 10.2174/1573412911309040002.412375725110470
  17. 17. Rogóż, J., Podbielska, M., Szpyrka, E. & Wnuk, M. (2021). Characteristics of Dietary Fatty Acids Isolated from Historic Dental Calculus of the 17th- and 18th-Century Inhabitants of the Subcarpathian Region (Poland). Molecules, 26(10), 2951. DOI: 10.3390/molecules26102951.815589134063539
  18. 18. Rousseaux, M.C., Cherbiy-Hoffmann, S.U., Hall, A.J. & Searles, P.S. (2020). Fatty acid composition of olive oil in response to fruit canopy position and artificial shading. Sci. Hortic., 271, 109477. DOI: 10.1016/j.scienta.2020.109477.
  19. 19. Schiavon, S., Pellattiero, E., Cecchinato, A., Tagliapietra, F., Dannenberger, D., Nuernberg, K., Nuernberg, G. & Bittante, G. (2016). The influence of different sample preparation procedures on the determination of fatty acid profiles of beef subcutaneous fat. liver and muscle by gas chromatography. J. Food Compos. Anal., 50, 10–18. DOI: 10.1016/j.jfca.2016.05.001.
  20. 20. Schwarzinger, B., Feichtinger, M., Blank-Landeshammer, B., Weghuber, J. & Schwarzinger, C. (2022). Quick determination of erucic acid in mustard oils and seeds. Journal of Analytical and Applied Pyrolysis, 164, 105523. DOI: 10.1016/j.jaap.2022.105523.
  21. 21. Sherazi, S.T.H., Arain, S., Mahesar, S.A., Bhanger, M.I. & Khaskheli, A.R. (2013). Erucic acid evaluation in rapeseed and canola oil by Fourier transform-infrared spectroscopy. Eur. J. Lipid Sci. Technol., 115(5), 535–540. DOI: 10.1002/ejlt.201200272.
  22. 22. Simopoulos, AP. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood), 233(6), 674-88. DOI: 10.3181/0711-MR-311.18408140
  23. 23. Słowik-Borowiec, M., Zdeb, G., Kuras, W. & Książek-Trela, P. (2022). Influence of Bacillus subtilis fermentation on content of selected macronutrients in seeds and beans. Acta Universitatis Cibiniensis. Series E: Food Technology, 26(1), 123-138. DOI: 10.2478/aucft-2022-0010.
  24. 24. Syed, M.B. (2017). Analysis of biodiesel by high performance liquid chromatography using refractive index detector. MethodsX, 4, 256–259. DOI: 10.1016/j.mex.2017.07.002.
  25. 25. Szpyrka, E., Broda, D., Oklejewicz, B., Podbielska, M., Slowik-Borowiec, M., Jagusztyn, B., Chrzanowski, G., Kus-Liskiewicz, M., Duda, M., Zuczek, J., Wnuk, M. & Lewinska, A. (2020). A Non-Vector Approach to Increase Lipid Levels in the Microalga Planktochlorella nurekis. Molecules, 25(2), 270. DOI: 10.3390/molecules25020270.
  26. 26. Tuller, G., Nemec, T., Hrastnik, C. & DauM, G. (1999). Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast, 15(14), 1555–1564. DOI: 10.1002/(SICI)1097-0061(199910)15:14<1555::AID-YEA479>3.0.CO;2-Z.
  27. 27. Tyburczy, C., Mossoba, M.M. & Rader, J.I. (2013). Determination of trans fat in edible oils: Current official methods and overview of recent developments Functional Foods and Dietary Supplements. Anal. Bioanal. Chem., 405(17), 5759–5772. DOI: 10.1007/s00216-013-7005-z.
  28. 28. Van Wychen, S., Ramirez, K. & Laurens, L.M.L. (2013). Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification. Contract, 303, 275–3000.
  29. 29. Wilczynska, A. & Modrzewski, A.F. (2018). Chapter 15 – Fatty acids in human diet and their impact on cognitive and emotional functioning. The Role of Functional Food Security in Global Health., 261–270. DOI: 10.1016/B978-0-12-813148-0.00015-3.
  30. 30. Yanty, N.A.M., Marikkar, J.M.N. & Abdulkarim, S.M. (2014). Determination of types of fat ingredient in some commercial biscuit formulations. Int. Food Res. J., 21(1), 277–282.
  31. 31. Zhang, Z.S., Wang, S., Liu, H., Li, B.Z. & Che, L. (2020). Constituents and thermal properties of milk thistle seed oils extracted with three methods. LWT, 126, 109282. DOI: 10.1016/j.lwt.2020.109282.
DOI: https://doi.org/10.2478/aucft-2022-0014 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 171 - 182
Submitted on: Sep 6, 2022
Accepted on: Dec 9, 2022
Published on: Dec 30, 2022
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Ewa Szpyrka, Magdalena Podbielska, Paulina Książek-Trela, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.