Have a personal or library account? Click to login
Mathematical Modelling of the Mechanical Properties of Four Varieties of Brine Pickles Using Neural Networks Cover

Mathematical Modelling of the Mechanical Properties of Four Varieties of Brine Pickles Using Neural Networks

Open Access
|Dec 2020

References

  1. 1. Nikora, V. (2006). Hydrodynamics of aquatic ecosystems: spatial-averaging perspective. Acta Geophysica, 55(1), 3-10. DOI: 10.2478/s11600-006-0043-6.10.2478/s11600-006-0043-6
  2. 2. Cudak, M. & Karcz J. (2006). Momentum transfer in an agitated vessel with off-centred impellers. Chem. Pap. 60(5), 375-380. DOI: 10.2478/s11696-006-0068-y10.2478/s11696-006-0068-y
  3. 3. Arendse, E., Fawole, O.A, & Opara, U.L. (2014). Influence of storage temperature and duration on postharvest physico-chemical and mechanical properties of pomegranate fruit and arils. CyTA - Journal of Food, 12(4), 389-398. DOI: 10.1080/19476337.2014.900114.10.1080/19476337.2014.900114
  4. 4. Baafi, E., & Safo-Kantanka, O. (2008). Agronomic evaluation of some local elite and released cassava varieties in the forest and transitional ecozones of Ghana. Asian J. Agric. Res., 2, 32-36. DOI: 10.3923/ajar.2008.32.36.10.3923/ajar.2008.32.36
  5. 5. Bargel, H., & Neinhuis, C. (2005). Tomato fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J. Exp. Bot., 56(413), 1049-1060. DOI: 10.1093/jxb/eri098.10.1093/jxb/eri09815710631
  6. 6. Bourne, M.C. (2002) Food texture and viscosity. New York: Academic Press, 416.10.1016/B978-012119062-0/50001-2
  7. 7. Brasca, M., Morandi, S., Lodi, R., & Tamburini A. (2007). Redox Potential to Discriminate among Species of Lactic Acid Bacteria. J. Appl. Microbiol., 103, 1516-1524. DOI: 10.1111/j.1365-2672.2007.03392.x.10.1111/j.1365-2672.2007.03392.x17953562
  8. 8. Eboibi, O., & Uguru, H. (2017). Storage conditions effect on physical, mechanical and textural properties of intact cucumber (cv Nandini) fruit. Int. J. Eng. Tech. Res., 7(11), 48-56.
  9. 9. El-Garawany, M.M., & Albaloushi, N.S. (2015). Deficit Irrigation Effects on Soil Chemistry Properties Yield and, Yield Components and Fruit Firmness of Cucumber and (Cucumis sativus L.) under Arid Condition of Al-Hassa, Saudi Arabia. The Meteorology, Environment and Arid Land Agriculture Journal, 26(1), 57 – 68. DOI: 10.4197/Met.26-1.6.10.4197/Met.26-1.6
  10. 10. Fleming, H.P., McDonald, L.C., McFeeters, R.F., Thompson, R.L., & Humphries E.G. (1995). Fermentation of Cucumbers without Sodium Chloride. J. Food Sci., 60 (2), 312-315. DOI: 10.1111/j.1365-2621.1995.tb05662.x.10.1111/j.1365-2621.1995.tb05662.x
  11. 11. Franco, W., Perez-Diaz, I., Johanningsmeier, S., & McFeeters, R. (2012). Characteristic of Spoilage-Associated Secondary Cucumber Fermentation. Appl. Environ. Microbiol., 78(4), 1273-1284. DOI: 10.1128/AEM.06605-11.10.1128/AEM.06605-11327302522179234
  12. 12. Garcha, S., & Natt, S. (2012). In Situ Control of Food Spoilage Fungus Using Lactobacillus Acidophilus NCDC 291. J. Food Sci. Tech., 49 (5), 643-648. DOI: 10.1007/s13197-011-0482-1.10.1007/s13197-011-0482-1
  13. 13. Gorzelany, J., Migut, D., Matłok, N., Antos, P., Kuźniar, P., & Balawejder, M. (2017). Impact of Pre-Ozonation on Mechanical Properties of Selected Genotypes of Cucumber Fruits during the Souring Process. Ozone: Sci. & Eng., 39(3), 188–95. DOI: 10.1080/01919512.2016.1273756.10.1080/01919512.2016.1273756
  14. 14. Guiné, R. P., Henriques, F., & Barroca, M. J. (2014). Influence of drying treatments on the physical and chemical properties of cucumber. J. Food. Meas. Charact., 8(3), 195–206. DOI: 10.1007/s11694-014-9180-9.10.1007/s11694-014-9180-9
  15. 15. Hadzima-Nyarko, M., Nyarko, E.K., & Moric, D. (2011). A neural network based modelling and sensitivity analysis of damage ratio coefficient. Expert Syst. Appl., 38, 13405-13413. DOI: 10.1016/j.eswa.2011.04.169.10.1016/j.eswa.2011.04.169
  16. 16. Harker, F.R., Maindonald, J., Murray, S.H., Gunson, F.A., Hallett, I.C., & Walker, S.B. (2002). Sensory interpretation of instrumental measurements: texture of apple fruit. Postharvest Biol. Tech., 24, 225-239. DOI: 10.1016/S0925-5214(01)00158-2.10.1016/S0925-5214(01)00158-2
  17. 17. Hashemi, S. M. B., & Khaneghah, A. M. (2017). Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Prog. Org. Coat., 110, 35–41.10.1016/j.porgcoat.2017.04.041
  18. 18. Hashemi, S. M. B., Khaneghah, A. M., & Ghahfarrokhi, M. G., Eş, I. (2017). Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Tech., 125, 26–34. DOI: 10.1016/j.porgcoat.2017.04.041.10.1016/j.porgcoat.2017.04.041
  19. 19. Jahangiri, M., Hassan-Beygi, S.R., Aboonajmi, M., & Lotfi, M. (2016). Effects of storage duration and conditions on mechanical properties of Viola cucumber fruit under compression loading. Agric. Eng. Int.: CIGR J., 18 (2), 323-332.
  20. 20. Kang, H.M., Park, K.W., & Saltveit, M.E. (2002). Elevated growing temperatures during the day improve the postharvest chilling tolerance of greenhouse-grown cucumber (Cucumis sativus) fruit. J. Postharvest Biol. Tech., 24, 49-57. DOI: 10.1016/S0925-5214(01)00129-6.10.1016/S0925-5214(01)00129-6
  21. 21. Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L.G. (2006). Some physical properties of Pistachio (Pistacia vera L.) nut and its kernel. J. Food Eng., 72, 30-38. DOI: 10.1016/j.jfoodeng.2004.11.016.10.1016/j.jfoodeng.2004.11.016
  22. 22. Kohyama, K., Nagata, A., Tamaki, Y., & Sakurai, N. (2009). Comparison of Human-Bite and Instrument Puncture Tests of Cucumber Texture. Postharvest Biol. Tech., 52(2), 243–246. DOI: 10.1016/j.postharvbio.2008.12.001.10.1016/j.postharvbio.2008.12.001
  23. 23. Manuwa, S.I., & Muhammad, H.A. (2011). Effects of moisture content and compression axis on mechanical properties of shea kernel. J. Food Eng., 105, 144-148. DOI: 10.1016/j.jfoodeng.2011.02.017.10.1016/j.jfoodeng.2011.02.017
  24. 24. Miraei Ashtiani, S.H., Golzarian, M.R., Motie, J.B., Emadi, B., Jamal, N.N., & Mohammadinezhad, H. (2016). Effect of Loading Position and Storage Duration on the Textural Properties of Eggplant. Int. J. Food Prop., 19, 814–825. DOI: 10.1080/10942912.2015.1045515.10.1080/10942912.2015.1045515
  25. 25. Mollazade, K., Omid, M., Akhlaghian, T., Fardin, K., Yousef Rezaei, K., Mohtasebi, S.S., & Zude, M. (2013). Analysis of texture-based features for predicting mechanical properties of horticultural products by laser light backscattering imaging. Comp. Electron. Agric., 98, 34–45. DOI: 10.1016/j.compag.2013.07.011.10.1016/j.compag.2013.07.011
  26. 26. Moradi, M., Mousavi Khaneghah, A., Parvaresh, M., & Balanian, H. (2019). Development and validation of mathematical modeling for terminal velocity of cantaloupe. J. Food Process Eng., 42, e13000. DOI: 10.1111/jfpe.13000.10.1111/jfpe.13000
  27. 27. Moradi, M., Balanian, H., Taherian, A., & Mousavi Khaneghah, A. (2020). Physical and mechanical properties of three varieties of cucumber: A mathematical modeling. J. Food Process Eng., 43, e13323. DOI: 10.1111/jfpe.13323.10.1111/jfpe.13323
  28. 28. Mousavizadeh, S.J., Mashayekhi, K., Garmakhany, A.D., Ehteshamnia, A., & Jafari, S.M. (2010). Evaluation of some physical properties of cucumber (Cucumis sativus L.). J. Agric. Sci. Tech., 4(4), 107-114.
  29. 29. Mukherjee, P.K., Nema, N.K., Maity, N., & Sarkar, B.K. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia Journal, 84, 227-236. DOI: 10.1016/j.fitote.2012.10.00310.1016/j.fitote.2012.10.00323098877
  30. 30. Murcia, M. A., Jiménez-Monreal, A. M., Gárcia-Diz, L., Carmona, M., Maggi, L., & Martínez-Tome, M. (2009). Antioxidant activity of minimally processed (in modified atmospheres), dehydrated and ready-to-eat vegetables. Food Chem. Toxic., 47, 2103–2110. DOI: 10.1016/j.fct.2009.05.039.10.1016/j.fct.2009.05.03919500638
  31. 31. Pentoś, K. (2016). The methods of extracting the contribution of variables in artificial neural network models – Comparison of inherent instability. Comp. Electron. Agric., 127, 141–146. DOI: 10.1016/j.compag.2016.06.010.10.1016/j.compag.2016.06.010
  32. 32. Saeidirad, M.H., Rohani, A., & Zarifneshat, S. (2013). Predictions of viscoelastic behavior of pomegranate using artificial neural network and Maxwell model. Comp. Electron. Agric., 98, 1–7. DOI: 10.1016/j.compag.2013.07.009.10.1016/j.compag.2013.07.009
  33. 33. Sahin, S., & Samnu, S. G. (2006). Physical properties of foods. Berlin, Germany: Springer.
  34. 34. Sakata, Y., Horie, H., & Yoshioka, Y. (2011). Fruit Textures of Beit Alpha, Greenhouse, Japanese, Souring and Slicer-Type Cucumbers. The Japanese Society for Horticultural Science, 80 (4), 420–425.10.2503/jjshs1.80.420
  35. 35. Sakurai, N., Iwatani, S., Terasaki, S. & Yamamoto, Y. (2005). Texture Evaluation of Cucumber by a New Acoustic Vibration Method. The Japanese Society for Horticultural Science, 74, 31-35.10.2503/jjshs.74.31
  36. 36. Sandoval-Torres, S., Tovilla-Morales, A.S., & Hernández-Bautista, E. (2017). Dimensionless modeling for convective drying of tuberous crop (Solanum tuberosum) by considering shrinkage. J. Food Eng., 214, 147-157. DOI: 10.1016/j.jfoodeng.2017.06.014.10.1016/j.jfoodeng.2017.06.014
  37. 37. Sotiroudis, G., Sotiroudis, E., & Chinou, E.I. (2010). Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (Cucumis sativus) cultivars. J. Food Biochem., 34, 61-78. DOI: 10.1111/j.1745-4514.2009.00296.x.10.1111/j.1745-4514.2009.00296.x
  38. 38. Turkmen, N., Sari, F., & Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem., 93, 713–718. DOI: 10.1016/j.foodchem.2004.12.038.10.1016/j.foodchem.2004.12.038
  39. 39. Vicente, A.R., Saladié, M., Rose, J.K.C, & Labavitch, J.M. (2007). The linkage between cell metabolism and fruit softening: Looking to the future. J. Sci. Food Agric., 87, 1435-1448. DOI: 10.1002/jsfa.2837.10.1002/jsfa.2837
  40. 40. Xiaoyi, J., Yuan, W., Xingzhu, W., Yonghua, L., Weiwei, X., Hui, R., & Guoqing, H. (2013). Effects of Lactic Acid Bacteria Inoculated Fermentation of Sour Cucumbers. Advance J. Sci. Technol., 5 (12), 1610–1617. DOI: 10.19026/ajfst.5.3397.10.19026/ajfst.5.3397
DOI: https://doi.org/10.2478/aucft-2020-0023 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 257 - 268
Submitted on: Sep 16, 2020
Accepted on: Oct 15, 2020
Published on: Dec 24, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Katarzyna Pentoś, Dagmara Migut, Natalia Matłok, Józef Gorzelany, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.