Have a personal or library account? Click to login
Mathematical Modelling and Numerical Simulation of Mass Transfer During Deep-Fat Frying of Plantain (Musa paradisiacal AAB) Chips (ipekere) Cover

Mathematical Modelling and Numerical Simulation of Mass Transfer During Deep-Fat Frying of Plantain (Musa paradisiacal AAB) Chips (ipekere)

Open Access
|Dec 2020

Abstract

This study developed a mathematical model following the fundamental principles of mass transfer for the simulation of the oil and moisture content change during the Deep-Fat Frying of plantain (ipekere) chip. The explicit Finite Difference Technique (FDT) was used to conduct a numerical solution to the consequential governing equation (partial differential equation) that was used to describe the mass transfer rate during the process. Computer codes that were computed in MATLAB were used for the implementation of FDT at diverse frying conditions. Samples of the plantain were cut into portions of 2 mm thickness, and these sliced portions were fried at separate frying oil temperatures (170, 180 and 190°C) between 0.5 and 4 minutes. The experimental data and the predicted outcomes were compared for the validation of the model, and the juxtaposition revealed a plausible agreement. The predicted values and the experimental values of oil and moisture transfer models produced correlation coefficients that range from 0.96 to 0.99 and 0.94 to 0.99, respectively. The predicted outcomes could be utilized for the control and design of the DFF.

DOI: https://doi.org/10.2478/aucft-2020-0022 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 247 - 256
Submitted on: May 26, 2020
Accepted on: Aug 15, 2020
Published on: Dec 24, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 James Abiodun Adeyanju, John Oluranti Olajide, Emmanuel Olusola Oke, Akinbode Adeyemi Adedeji, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.