Have a personal or library account? Click to login
Genetic diversity and relationship between wild and cultivated cowpea [Vigna unguiculata (L.) Walp.] as assessed by allozyme markers Cover

Genetic diversity and relationship between wild and cultivated cowpea [Vigna unguiculata (L.) Walp.] as assessed by allozyme markers

Open Access
|Dec 2021

References

  1. Bennett M. D., Leitch I. J. (1995): Nuclear DNA amounts in angiosperms. Annals of Botany 76: 113 – 176.10.1006/anbo.1995.1085
  2. Bi I. Z., Maquet A., Baudoin J. P. (2003): Population genetic structure of wild Phaseolus lunatus (Fabaceae), with special reference to population sizes. American Journal of Botany 90: 897 – 90410.3732/ajb.90.6.89721659184
  3. Bidima I. M. (2012): Haricot niébé: L’or blanc du Sahel. La voix du Paysan – Mensuel de l’entrepreneur rural, 14 p.
  4. Boukar O., Belko N., Chamarthi S., Togola A., Batieno J., Owusu E., Haruna M., Diallo S., Umar M. L., Olufajo O., Fatokun, C. (2018): Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding 00: 1 – 10. doi: 10.1111/pbr.1258910.1111/pbr.12589
  5. Brown A. H. D., Allard F. W. (1970): Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics 66: 133 – 145.10.1093/genetics/66.1.133121248017248507
  6. Coulibaly S., Pasquet R. S., Papa R., Gepts P. (2002): AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theoretical and Applied Genetics 104: 358 – 366. doi: 10.1007/s00122010074010.1007/s00122010074012582708
  7. Dakora F. D., Belane A. K. (2019): Evaluation of Protein and Micronutrient Levels in Edible Cowpea (Vigna unguiculata L. Walp.) Leaves and Seeds. Frontiers in Sustainable Food Systems 3: Article 70. doi: 10.3389/fsufs.2019.0007010.3389/fsufs.2019.00070
  8. Dudje I. Y., Omoigui L. O., Ekeleme F., Kamara A. Y., Ajeigbe H. (2009): Production du niébé en Afrique de l’Ouest: guide du paysan. IITA, Ibadan, Nigeria.
  9. Feleke Y., Pasquet R. S., Gepts P. (2006): Development of PCR-based chloroplast DNA markers that characterize domesticated cowpea (Vigna unguiculata ssp. unguiculata var. unguiculata) and highlight its crop-weed complex. Plant Systematics and Evolution 262: 75 – 87. doi: 10.1007/s00606-006-0475-010.1007/s00606-006-0475-0
  10. FAOSTAT. (2016): Food and Agriculture Organization of the United Nations Statistics Division. http://faostat3.fao.org/download/Q/QC/E
  11. Forneck A., Walker M. A., Schreiber A., Blaich R., Schumann F. (2003): Genetic diversity in Vitis vinifera Gmelin from Europe, the Middle East and North Africa. Acta Horticulturae 603: 549 – 542. doi: 10.17660/ActaHortic.2003.603.7210.17660/ActaHortic.2003.603.72
  12. Hamrick J. L., Godt M. J. (1990): Allozyme diversity in plant species. In: A. D. H. Brown, M. T. Clegg, A. L. Kahler, B. S. Weir (Eds): Plant population genetics, breeding and genetic resources (pp. 43 – 63). Sinauer, Sunderland, Massachusetts, USA
  13. Horn L. N., Shimelis H. (2020): Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Annals of Agricultural Sciences 65: 83 – 91. https://doi.org/10.1016/j.aoas.2020.03.00210.1016/j.aoas.2020.03.002
  14. John P. S., Pandey R. K., Buresh R. J., Prasad R. (1992): Nitrogen contribution of cowpea green manure and residue to upland rice. Plant and Soil 142: 53 – 61 (1992). doi: 10.1007/BF0001017410.1007/BF00010174
  15. Kebede E., Bekeko Z. (2020): Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture 6: Article 1769805. 21 pages. doi: 10.1080/23311932.2020.176980510.1080/23311932.2020.1769805
  16. Keller L. F., Waller D. M. (2002): Inbreeding effects in wild populations. Trends in Ecology & Evolution 17: 230 – 241.10.1016/S0169-5347(02)02489-8
  17. Kouadio D., Echikh N., Toussaint A., Pasquet R S., Baudoin J. P. (2007): Organisation du pool génique de Vigna unguiculata (L.) Walp.: croisements entre les formes sauvages et cultivées du niébé. Biotechnology, Agronomy, Society and Environment 11: 47 – 57.
  18. Kouam E. B., Ndomou M., Gouado I., Pasquet R. S. (2017): Assessment of the genetic diversity of cultivated common beans (Phaseolus vulgaris L.) from Cameroon and Kenya using allozymes markers. Journal of Experimental Biology and Agricultural Sciences 5: 87 – 97. doi: 10.18006/2017.5(1).087.09710.18006/2017.5(1).087.097
  19. Kouam E. B., Pasquet R. S., Campagne P., Tignegre J. B., Thoen K., Gaudin R., Ouedraogo J. T., Salifu A. B., Muluvi G. M., Gepts P. (2012): Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant Biology12: Article 113. doi: 10.1186/1471-2229-12-11310.1186/1471-2229-12-113343813622827925
  20. Lstiburek M., Mullin T. J., Mackay T. F. C., Huber D., Li B. (2005): Positive Assortative Mating With Family Size as a Function of Predicted Parental Breeding Values. Genetics 171: 1311 – 1320. doi: 10.1534/genetics.105.04172310.1534/genetics.105.041723145683415965252
  21. Lush W. M. (1979): Floral morphology of wild and cultivated cowpeas. Economic Botany 33: 442 – 447.10.1007/BF02858340
  22. Madodé Y. E., Houssou P. A., Linnemann A. R., Hounhouigan D. J., Nout M. J. R., van Boekel M. A. J. S. (2011): Preparation, consumption, and nutritional composition of West African cowpea dishes. Ecology of Food and Nutrition 50: 115 – 136. doi: 10.1080/03670244.2011.55237110.1080/03670244.2011.55237121888592
  23. Manda J., Alene A. D., Tufa A. H., Abdoulaye T., Wossen T., Chikoye D., Manyong V. (2019): The poverty impacts of improved cowpea varieties in Nigeria: A counterfactual analysis. World Development 122: 261 – 271. doi: 10.1016/j.worlddev.2019.05.02710.1016/j.worlddev.2019.05.027669475131582870
  24. Nei M. (1973): Analysis of Gene Diversity in Subdivided Populations. Proceedings of the National Academy of Sciences 70: 3321 – 3323. doi: 10.1073/pnas.70.12.332110.1073/pnas.70.12.33214272284519626
  25. Pasquet R. S. (1996): Cultivated cowpea (Vigna unguiculata): genetic organization and domestication. In: B. Pickersgill, J. M. Lock (Eds): Advances in legume systematics: 8. Legumes of economic importance (pp. 101 – 108). Kew, Royal Botanic Gardens
  26. Pasquet R. S. (1999): Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theoretical and Applied Genetics 98: 1104 – 1119. doi: 10.1007/s00122005117410.1007/s001220051174
  27. Peakall R., Smouse P. E. (2012): GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537 – 2539. doi: 10.1093/bioinformatics/bts46010.1093/bioinformatics/bts460
  28. Ritland K. (2002): Extensions of models for the estimation of mating systems using n independent loci. Heredity 88: 221 – 228. doi: 10.1038/sj.hdy.680002910.1038/sj.hdy.6800029
  29. Rohlf F. J. (2000): NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.1. New York
  30. Santalla M., Rodiño A. P., De Ron A. M. (2002): Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theoretical and Applied Genetics 104: 934 – 944. doi: 10.1007/s00122-001-0844-610.1007/s00122-001-0844-6
  31. Second G., Trouslot P. (1980): Electrophorèse d’enzymes de riz (Oryza sp.). – ORSTOM, Paris, No120, 88 p.
  32. Suvi W. T., Shimelis H., Laing M., Mathew I., Shayanowako A. I. T. (2019): Assessment of the genetic diversity and population structure of rice genotypes using SSR markers, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 70: 76 – 86. doi: 10.1080/09064710.2019.167085910.1080/09064710.2019.1670859
  33. Tang S., Wei X., Jiang Y., Brar D., Khush G. (2007): Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice. Agricultural Sciences in China 6: 641 – 646. doi: 10.1016/s1671-2927(07)60094-710.1016/S1671-2927(07)60094-7
  34. Vaillancourt R. E., Weeden N. F., Barnard J. (1993): Isozyme Diversity in the Cowpea Species Complex. Crop Science 33: 606 – 613. doi: 10.2135/cropsci1993.0011183x003300030037x10.2135/cropsci1993.0011183X003300030037x
  35. Villa T. C. C., Maxted N., Scholten M., Ford-Lloyd B. (2005): Defining and identifying crop landraces. Plant Genetic Resources: Characterization and Utilization 3: 373 – 384. doi: 10.1079/pgr200591.10.1079/PGR200591
  36. Wendel J. F., Weeden N. F. (1989): Visualization and interpretation of plant isozymes. In D. E. Soltis, P. S. Soltis (Eds): Isozymes in plant biology (pp. 5 – 45). Chapman and Hall, London, UK10.1007/978-94-009-1840-5_2
  37. Weng Y., Qin J., Eaton S., Yang Y., Ravelombola W. S., Shi A. (2019): Evaluation of Seed Protein Content in USDA Cowpea Germplasm. HortScience 54: 814 – 817. doi: 10.21273/HORTSCI13929-19.10.21273/HORTSCI13929-19
  38. Wright S. (1922): Coefficients of Inbreeding and Relationship. The American Naturalist 56: 330 – 338.10.1086/279872
  39. Zuluaga D. L., Lioi L., Delvento C., Pavan S., Sonnante G. (2021). Genotyping-by-Sequencing in Vigna unguiculata Landraces and Its Utility for Assessing Taxonomic Relationships. Plants10: 509. https://doi.org/10.3390/plants1003050910.3390/plants10030509800140033803432
DOI: https://doi.org/10.2478/ats-2021-0021 | Journal eISSN: 1801-0571 | Journal ISSN: 0231-5742
Language: English
Page range: 201 - 208
Submitted on: Apr 1, 2021
Accepted on: Nov 30, 2021
Published on: Dec 17, 2021
Published by: Mendel University in Brno
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2021 Eric Bertrand Kouam, Geoffrey Mwanza Muluvi, Rémy Stéphane Pasquet, published by Mendel University in Brno
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.