Have a personal or library account? Click to login
Design of a Low-Cost Robotic Prototype for Fruit Harvest with Flexible Gripping Using 3D Printing Cover

Design of a Low-Cost Robotic Prototype for Fruit Harvest with Flexible Gripping Using 3D Printing

Open Access
|Feb 2026

References

  1. Achilli, G.M., Logozzo, S., Malvezzi, M., Valigi, M.C., 2022. Contact mechanics analysis of a soft robotic fingerpad. Frontiers in Mechanical Engineering 8, 966335. https://doi.org/10.3389/fmech.2022.966335
  2. Afsah-Hejri, L., Homayouni, T., Toudeshki, A., Ehsani, R., Ferguson, L., Castro-García, S. 2022. Mechanical harvesting of selected temperate and tropical fruit and nut trees. Horticultural Reviews 49, 171–242. https://doi.org/10.1002/9781119851981.ch4
  3. Alaaudeen, K.M., Selvarajan, S., Manoharan, H., Jhaveri, R.H., 2024. Intelligent robotics harvest system process for fruits grasping prediction. Scientific Reports 14, 2820. https://doi.org/10.1038/s41598-024-52743-8
  4. An, Z., Wang, C., Raj, B., Eswaran, S., Raffik, R., Debnath, S., Rahin, S.A., 2022. Application of new technology of intelligent robot plant protection in ecological agriculture. Journal of Food Quality, 2022, 1–7. https://doi.org/10.1155/2022/1257015
  5. Bac, C.W., Van Henten, E.J., Hemming, J., Edan, Y., 2014. Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. Journal of Field Robotics 31(6), 888–911. https://doi.org/10.1002/rob.21525
  6. Bao, Y., Yuan, N., Zhao, Y., Wu, L. 2022. Recent patents for collection device of fruit harvesting machine. Recent Patents on Engineering 16(4), 96–108. https://doi.org/10.2174/1872212116666220107115125
  7. Baur, P., Iles, A., 2023. Replacing humans with machines: a historical look at technology politics in California agriculture. Agriculture and Human Values 40(1), 113–140. https://doi.org/10.1007/s10460-022-10341-2
  8. Blanco, K., Navas, E., Rodríguez-Nieto, D., Emmi, L., Fernández, R., 2025. Design and experimental assessment of 3D-printed soft grasping interfaces for robotic harvesting. Agronomy, 15(4), 804. https://doi.org/10.3390/agronomy15040804
  9. Buzzatto, J., Jiang, H., Liang, J., Busby, B., Lynch, A., Godoy, R.V., Matsunaga., S., Haraguchi, R., Mariyama, T., MacDonald, B.A., Liarokapis, M., 2024. Multi-layer, sensorized kirigami grippers for delicate yet robust robot grasping and single-grasp object identification. IEEE Access 12, 115994–116012. https://doi.org/10.1109/ACCESS.2024.3446729
  10. Davidson, J.R., Silwal, A., Hohimer, C.J., Karkee, M., Mo, C., Zhang, Q., 2016. Proof-of-concept of a robotic apple harvester. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 634–639. IEEE, Daejeon, South Korea. https://doi.org/10.1109/IROS.2016.7759119
  11. De Grandpré, A., Elton, C., Senese, D., Mullinix, K., 2022. Soft adaptation: The role of social capital in building resilient agricultural landscapes. Frontiers in Agronomy, 4. https://doi.org/10.3389/fagro.2022.980888
  12. Elfferich, J.F., Dodou, D., Della Santina, C., 2022. Soft robotic grippers for crop handling or harvesting: a review. IEEE Access 10, 75428–75443. https://doi.org/10.1109/ACCESS.2022.3190863
  13. Genbach, A., Jamankulova, N., Beloev, H., Iliev, I., 2018. Energy divider with insert for heat protection of fruit trees. Acta Technologica Agriculturae, 21(1), 8–13. https://doi.org/10.2478/ata-2018-0002
  14. Harman, H., Sklar, E.I., 2022. Multi-agent task allocation techniques for harvest team formation. In Dignum, F., Mathieu, P., Corchado, J.M., De La Prieta, F. (Eds), Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection. PAAMS 2022. Lecture Notes in Computer Science 13616. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-031-18192-4_18
  15. Hasanshahi, B., Cao, L., Song, K.-Y., Zhang, W., 2024. Design of soft robots: A review of methods and future opportunities for research. Machines, 12(8), 527. https://doi.org/10.3390/machines12080527
  16. Kashkarov, A., Diordiiev, V., Sabo, A., Novikov, G., 2018. Semi-autonomous drone for agriculture on the tractor base. Acta Technologica Agriculturae, 21(4), 149–152. https://doi.org/10.2478/ata-2018-0027
  17. Magistri, F., Pan, Y., Bartels, J., Behley, J., Stachniss, C., Lehnert, C., 2024. Improving robotic fruit harvesting within cluttered environments through 3D shape completion. IEEE Robotics and Automation Letters 9(8), 7357–7364. https://doi.org/10.1109/LRA.2024.3421788
  18. Navas, E., Shamshiri, R.R., Dworak, V., Weltzien, C., Fernández, R., 2023. Soft gripper for small fruits harvesting and pick and place operations. Frontiers in Robotics and AI 10, 1330496. https://doi.org/10.3389/frobt.2023.1330496
  19. Spagnuolo, M., Todde, G., Caria, M., Furnitto, N., Schillaci, G., Failla, S., 2025. Agricultural robotics: a technical review addressing challenges in sustainable crop production. Robotics 14(2), 9. https://doi.org/10.3390/robotics14020009
  20. Zhang, J., Kang, N., Qu, Q., Zhou, L., Zhang, H., 2024. Automatic fruit picking technology: a comprehensive review of research advances. Artificial Intelligence Review 57, 54. https://doi.org/10.1007/s10462-023-10674-2
Language: English
Page range: 7 - 17
Published on: Feb 9, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Maxwell Salazar, Paola Portero, Santiago Pérez, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.