Have a personal or library account? Click to login
Acoustic Emission Control of Compounds with Interference, Which Are Assembled by Thermal Method Cover

Acoustic Emission Control of Compounds with Interference, Which Are Assembled by Thermal Method

Open Access
|Aug 2025

References

  1. AGLETDINOV, E. – POMPONI, E. – MERSON, D. – VINOGRADOV, A. 2016. A novel Bayesian approach to acoustic emission data analysis. In Ultrasonics, no. 72, pp. 89–94. DOI: https://doi.org/10.1016/j.ultras.2016.07.014
  2. ALSHORMAN, O. – ALKAHATNI, F. – MASADEH, M. – IRFAN, M. – GLOWACZ, A. – ALHOBIANI, F. – KOZIK, J. – GLOWACZ, W. 2021. Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study. In Advances in Mechanical Engineering, vol. 13, no. 2. DOI: https://doi.org/10.1177/1687814021996915
  3. BAGHERI, A. – TARIGHI, J. – EMAMI, N. – SZYMANEK, M. 2024. Extension experts´ intentions to use precision agricultural technologies, a test with the technology acceptance model. In Acta Technologica Agriculturae, vol. 27, no. 2, pp. 84–91. DOI: https://doi.org/10.2478/ata-2024-0012
  4. BARAT, V. A. – CHERNOV, D. V. – ELIZAROV, S. V. 2016. Discovering data flow discords for enhancing noise immunity of acoustic-emission testing. In Russian Journal of Nondestructive Testing, vol. 52, no. 6, pp. 347–356. DOI: https://doi.org/10.1134/S1061830916060024
  5. BERANEK, L. – MELLOW, T. 2019. Acoustics: Sound Fields, Transducers and Vibration. UK : Elsevier, Academic Press, 900 pp. ISBN 978-0-12-815227-0. DOI: https://doi.org/10.1016/C2017-0-01630-0
  6. BERTAGNOLIO, F. – MADSEN, H. A. – FISCHER, A. – BAK, CH. 2017. A semi-empirical airfoil stall noise model based on surface pressure measurements. In Journal of Sound and Vibration, vol. 387, pp. 127–162. DOI: https://doi.org/10.1016/j.jsv.2016.09.033
  7. BUILO, S. I. 2013. Physical, mechanical and statistical aspects of acoustic emission diagnostics. In Physics and Mechanics of New Materials and Their Applications. New York : Nova Science Publishers, no. 15, pp. 171–184.
  8. DANYUK, A. – MERSON, D. – VINOGRADOV, A. 2014. New prospects to use acoustic emission during scratch testing for probing fundamental mechanisms of plastic deformation. In The 12th International Conference of the Slovenian Society for Non-Destructive Testing “Application of Contemporary Non-Destructive Testing in Engineering”, 4–6 September 2013, Portorož, Slovenia, pp. 567–574.
  9. DANYUK, A. V. – RASTEGAEV, I. A. – MERSON, D. L. – VINOGRADOV, A. 2017. Advanced-reliability acoustic-emission transducers. In Russian Journal of Nondestructive Testing, vol. 53, no. 1, pp. 32–38.
  10. CHAN, P. K. – STOLFO, S. J. 1998. Toward scalable learning with nonuniform class and cost distributions: A case study in credit card fraud detection. In KDD´98 Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, USA, 27–31 August 1998, pp. 164–168.
  11. GLOWACZ, A. 2018. Acoustic based fault diagnosis of three-phase induction motor. In Applied Acoustics, vol. 137, pp. 82–89. DOI: https://doi.org/10.1016/j.apacoust.2018.03.010
  12. JIANG, C. – SONG, Q. – GUO, D. – LI, H. 2014. Estimation algorithm of minimum dwell time in precision cylindrical plunge grinding using acoustic emission signal. In International Journal of Precision Engineering and Manufacturing, vol. 15, pp. 601–607. DOI: https://doi.org/10.1007/s12541-014-0377-y
  13. KOVACEVIC, R. – MOMBER, A. W. – MOHEN, R. S. 2002. Energy dissipation control in hydro-abrasive machining using quantitative acoustic emission. In The International Journal of Advanced Manufacturing Technology, vol. 20, no. 6, pp. 397–406. DOI: https://doi.org/10.1007/s001700200169
  14. LACAGNINA, G. – CHAITANYA, P. – KIM, J.-H. – BERK, T. – JOSEPH, P. – CHOI, K.-S. GANAPATHISUBRAMANI, B. – HASHEMINEJAD, S. M. – CHONG, T. P. – STALNOV, O. SHAHAB, M. F. – OMIDYEGANEH, M. – PINELLI. A. 2021. Leading edge serrations for the reduction of aerofoil self-noise at low angle of attack, pre-stall and post-stall conditions. In International Journal of Aeroacoustics, vol. 20, no. 1–2, pp. 130–156. DOI: https://doi.org/10.1177/1475472X20978379
  15. LIU, J. – JIANG, C. – YANG, X. – SUN, S. 2024. Review of the application of acoustic emission technology in green manufacturing. In International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 11, no. 3, pp. 995–1016. DOI: https://doi.org/10.1007/s40684-023-00557-w
  16. NARAYANAN, S. – SINGH, S. K. – KANT, M. – NARAYANMURTHY, A. 2024. Control of fan broadband noise through wavy leading and trailing edge serrations. In International Journal of Aeroacoustics, vol. 24, no. 1–2, pp. 90–103. DOI: https://doi.org/10.1177/1475472X241306316
  17. NASHED, M. S. – STEEL, J. A. – REUBEN, R. L. 2013. The use of acoustic emission for the condition assessment of gas turbines: Acoustic emission generation from normal running. In Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 228, no. 4, pp. 286–308. DOI: https://doi.org/10.1177/0954408913502167
  18. O´BRIEN, R. J. – FONTANA, J. M. – PONSO, N. – MOLISANI, L. 2017. A pattern recognition system based on acoustic signals for fault detection on composite materials. In European Journal of Mechanics – A/Solids, vol. 64, pp. 1–10. DOI: https://doi.org/10.1016/j.euromechsol.2017.01.007
  19. OHTSU, M. 2015. Acoustic Emission (AE) and Related Nondestructive Evaluation (NDE) Techniques in the Fracture Mechanics of Concrete. Fundamentals and Applications. UK : Elsevier, Woodhead Publishing, 318 рp. ISBN 978-1-78242-327-0. DOI: https://doi.org/10.1016/C2014-0-02667-6
  20. POMPONI, E. – VINOGRADOV, A. – DANYUK, A. 2015. Wavelet based approach to signal activity detection and phase picking: Application to acoustic emission. In Signal Processing, no. 115, pp. 110–119. DOI: https://doi.org/10.1016/j.sigpro.2015.03.016
  21. POMPONI, E. – VINOGRADOV, A. 2013. A real-time approach to acoustic emission clustering. In Mechanical Systems and Signal Processing, vol. 40, no. 2, pp. 791–804. DOI: https://doi.org/10.1016/j.ymssp.2013.03.017
  22. RANI, M. – DHOK, S. – DESHMUKH, R. 2020. A machine condition monitoring framework using compressed signal processing. In Sensors, vol. 20, no. 1, article no. 319. DOI: https://doi.org/10.3390/s20010319
  23. SHAO, H. – JIANG, H. – LI, X. – WU, S. 2018. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. In Knowledge-Based Systems, vol. 140, pp. 1–14. DOI: https://doi.org/10.1016/j.knosys.2017.10.024
  24. ZHANG, Y. – WANG, T. – PAN, W.-P. – ROMERO, C. E. 2019a. Advances in Ultra-Low Emission Control Technologies for Coal-Fired Power Plants. UK : Elsevier, Woodhead Publishing, 273 рp. ISBN 978-0-08-102418-8. DOI: https://doi.org/10.1016/C2017-0-00932-1
  25. ZHANG, J. – YANG, S. – HAO, R. – GU, X. 2019b. Amplitude attenuation laws of acoustic emission waves in plate structures. In Dyna, vol. 94, no. 1, pp. 67–74. DOI: http://dx.doi.org/10.6036/8987
  26. ZHAO, X. – JIA, M. – LIN, M. 2020. Deep Laplacian Auto-encoder and its application into imbalanced fault diagnosis of rotating machinery. In Measurement, vol. 152, article no. 107320. DOI: https://doi.org/10.1016/j.measurement.2019.107320
  27. ŽITŇÁK, M. – LENDELOVÁ, J. – PIVARČIOVÁ, Z. – KORENKO, M. – KIEŁBASA, P. – DOSTÁL, P. 2023. Possibilties of noise load elemination in production. In Acta Technologica Agriculturae, vol. 26, no. 1, pp. 42–48. DOI: https://doi.org/10.2478/ata-2023-0006
  28. WANG, W.-J. – CUI, L.-L. – CHEN, D.-Y. 2016. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault. In Acta Mechanica Sinica, vol. 32, pp. 265–272. DOI: https://doi.org/10.1007/s10409-015-0529-z
  29. WU, Z. – GUO, Y. – LIN, W. – YU, S. – JI, Y. 2018. A weighted deep representation learning model for imbalanced fault diagnosis in cyber-physical systems. In Sensors, vol. 18, no. 4, article no. 1096. DOI: https://doi.org/10.3390/s18041096
  30. XU, B. – WU, J. – WANG, M. 2017. Study of modal acoustic emission to monitor the impact damage in a composite plate. In Journal of Vibroengineering, vol. 19, no. 5, pp. 3335–3348. DOI: https://doi.org/10.21595/jve.2017.17879
Language: English
Page range: 183 - 190
Published on: Aug 21, 2025
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mykola Zenkin, Serhii Lisovets, Dmytro Makatora, Ján Kosiba, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.