References
- ALI, H. – FAROOQUE, A. A. –ABBAS, F. –YAQUB, R. – ABDALLA, A. – SOORA, P. 2024. An IoT based weather monitoring system for smart agriculture. In 2024 IEEE Conference on Technologies for Sustainability (SusTech), Portland, OR, USA, pp. 378–382. DOI: https://doi.org/10.1109/SusTech60925.2024.10553425
- Ammoniaci, M. – Kartsiotis, S.-P. – Perria, R. – Storchi, P. 2021. State of the art of monitoring technologies and data processing for precision viticulture. In Agriculture, vol. 11, no. 3, article no. 201. DOI: https://doi.org/10.3390/agriculture11030201
- Bergman, T. L. – Lavine, A. S. 2017. Fundamentals of Heat and Mass Transfer. 8th ed. Hoboken, NJ, USA : John Wiley & Sons, Inc., 1045 pp. ISBN 978-1-119-32042-5.
- CHEN, S. – GUO, J. – ZHAO, Y. – LI, X. – LIU, F. – CHEN, Y. 2021. Evaluation and grading of climatic conditions on nutritional quality of rice: A case study of Xiaozhan rice in Tianjin. In Meteorological Applications, vol. 28, no. 4, article no. e2021. DOI: https://doi.org/10.1002/met.2021
- da Cunha, A. R. 2015. Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation. In Environmental Monitoring and Assessment, vol. 187, no. 5, article no. 236. DOI: https://doi.org/10.1007/s10661-015-4458-x
- Dai, W. – Tan, M. – Zhu, H. 2023. Design of a radiation shield applied to surface air temperature monitoring. In Journal of Instrumentation, vol. 18, article no. P02015. DOI: https://doi.org/10.1088/1748-0221/18/02/P02015
- EL HACHIMI, C. – BELAQZIZ, S. – KHABBA, S. – SEBBAR, B. – DHIBA, D. – CHEHBOUNI, A. 2023. Smart weather data management based on artificial intelligence and big data analytics for precision agriculture. In Agriculture, vol. 13, no. 1, article no. 95. DOI: https://doi.org/10.3390/agriculture13010095
- Erell, E. – Leal, V. – Maldonado, E. 2005. Measurement of air temperature in the presence of a large radiant flux: An assessment of passively ventilated thermometer screens. In Boundary-Layer Meteorology, vol. 114, pp. 205–231. DOI: https://doi.org/10.1007/s10546-004-8946-8
- Ferrández-Pastor, F. J. – García-Chamizo, J. M. – Nieto-Hidalgo, M. – Mora-Martínez, J. 2018. Precision agriculture design method using a distributed computing architecture on Internet of Things context. In Sensors, vol. 18, no. 6, article no. 1731. DOI: https://doi.org/10.3390/s18061731
- FRISVOLD, G. B. – MURUGESAN, A. 2013. Use of weather information for agricultural decision making. In Weather, Climate and Society, vol. 5, no. 1, pp. 55–69. DOI: https://doi.org/10.1175/WCAS-D-12-00022.1
- Georges, C. – Kaser, G. 2002. Ventilated and unventilated air temperature measurements for glacier-climate studies on a tropical high mountain site. In Journal of Geophysical Research: Atmospheres, vol. 107, no. D24, pp. ACL 15-1–ACL 15-10. DOI: https://doi.org/10.1029/2002JD002503
- Gupta, H. V. – Kling, H. – Yilmaz, K. K. – Martinez, G. F. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. In Journal of Hydrology, vol. 377, no. 1–2, pp. 80–91. DOI: https://doi.org/10.1016/j.jhydrol.2009.08.003
- HOLLEMAN, C. – REMBOLD, F. – CRESPO, O. – CONTI, V. 2020. The impact of climate variability and extremes on agriculture and food security – An analysis of the evidence and case studies. Background paper for The State of Food Security and Nutrition in the World 2018. In FAO Agricultural Development Economics Technical Study No. 4. Rome, FAO, 108 pp. DOI: https://doi.org/10.4060/cb2415en
- Hubbard, K. G. – Lin, X. 2002. Realtime data filtering models for air temperature measurements. In Geophysical Research Letters, vol. 29, no. 10, pp. 67-1–67-4. DOI: https://doi.org/10.1029/2001GL013191
- Hubbard, K. G. – Lin, X. – Walter-Shea, E. A. 2001. The effectiveness of the ASOS, MMTS, Gill, and CRS air temperature radiation shields. In Journal of Atmospheric and Oceanic Technology, vol. 18, no. 6, pp. 851–864. DOI: https://doi.org/10.1175/1520-0426(2001)018<0851:TEOTAM>2.0.CO;2
- Hubbart, J. A. 2011. An inexpensive alternative solar radiation shield for ambient air temperature micro-sensors. In Journal of Natural & Environmental Sciences, vol. 2, no. 2, pp. 9–14.
- Ioannou, K. – Karampatzakis, D. – Amanatidis, P. – Aggelopoulos, V. – Karmiris, I. 2021. Low-cost automatic weather stations in the Internet of Things. In Information, vol. 12, no. 4, article no. 146. DOI: https://doi.org/10.3390/info12040146
- Jenkins, G. 2014. A comparison between two types of widely used weather stations. In Weather, vol. 69, no. 4, pp. 105–110. DOI: https://doi.org/10.1002/wea.2158
- Kuznetsov, P. N. – Kotelnikov, D. Y. – Shchekin, V. Y. – Koltsov, A. D. – Kabankova, E. N. 2022. Intelligent complex of monitoring and diagnostics of grape plantations. In IOP Conference Series: Earth and Environmental Science, vol. 981, no. 3, article no. 032020. DOI: https://doi.org/10.1088/1755-1315/981/3/032020
- MARMAI, N. – FRANCO VILLORIA, M. – GUERZONI, M. 2022. How the Black Swan damages the harvest: Extreme weather events and the fragility of agriculture in development countries. In PLOS ONE, vol. 17, no. 2, article no. e0261839. DOI: https://doi.org/10.1371/journal.pone.0261839
- Matese, A. – Di Gennaro, S. F. – Zaldei, A. – Genesio, L. – Vaccari, F. P. 2009. A wireless sensor network for precision viticulture: The NAV system. In Computers and Electronics in Agriculture, vol. 69, no. 1, pp. 51–58. DOI: https://doi.org/10.1016/j.compag.2009.06.016
- Onesti, G. – González-Domínguez, E. – Rossi, V. 2016. Accurate prediction of black rot epidemics in vineyards using a weather-driven disease model. In Pest Management Science, vol. 72, no. 12, pp. 2321–2329. DOI: https://doi.org/10.1002/ps.4277
- Rausand, M. – Barros, A. – Hoyland, A. 2021. System Reliability Theory: Models, Statistical Methods, and Applications. 3rd ed. Hoboken, NJ, USA : John Wiley & Sons, Inc., 845 pp. eISBN 9781119373940. DOI: https://doi.org/10.1002/9781119373940
- Richardson, S. J. – Brock, F. V. – Semmer, S. R. – Jirak, C. 1999. Minimizing errors associated with multiplate radiation shields. In Journal of Atmospheric and Oceanic Technology, vol. 16, no. 11, pp. 1862–1872. DOI: https://doi.org/10.1175/1520-0426(1999)016<1862:MEAWMR>2.0.CO;2
- Sun, X. – Yan, S. – Wang, B. – Xia, L. – Liu, Q. – Zhang, H. 2015. Air temperature error correction based on solar radiation in an economical meteorological wireless sensor network. In Sensors, vol. 15, no. 8, pp. 18114–18139. DOI: https://doi.org/10.3390/s150818114
- Tarara, J. M. – Hoheisel, G.-A. 2007. Low-cost shielding to minimize radiation errors of temperature sensors in the field. In HortScience, vol. 42, no. 6, pp. 1372–1379. DOI: https://doi.org/10.21273/HORTSCI.42.6.1372
- Yang, J. – Deng, X. – Liu, Q. – Ding, R. 2021. Design and experimental study of an effective, low-cost, naturally ventilated radiation shield for monitoring surface air temperature. In Meteorology and Atmospheric Physics, vol. 133, no. 2, pp. 349–357. DOI: https://doi.org/10.1007/s00703-020-00754-1
- Yang, J. – Liu, Q. – Dai, W. 2018. A method for solar radiation error correction of temperature measured in a reinforced plastic screen for climatic data collection. In International Journal of Climatology, vol. 38, no. 3, pp. 1328–1336. DOI: https://doi.org/10.1002/joc.5247
- Yang, J. – Liu, Q. – Dai, W. – Ding, R. 2016. A temperature error correction method for a naturally ventilated radiation shield. In Journal of Atmospheric and Solar-Terrestrial Physics, vol. 149, pp. 40–45. DOI: https://doi.org/10.1016/j.jastp.2016.09.010
- Yang, S.-H. – Lee, C.-G. – Kim, J.-Y. – Lee, W.-K. – Ashtinai-Araghi, A. – Rhee, J.-Y. 2012. Effects of fan-aspirated radiation shield for temperature measurement in greenhouse environment. In Journal of Biosystems Engineering, vol. 37, no. 4, pp. 245–251. DOI: https://doi.org/10.5307/JBE.2012.37.4.245
- WORLD METEOROLOGICAL ORGANIZATION (WMO). 2023. Guide to Instruments and Methods of Observation, Volume I – Measurement of Meteorological Variables. Preliminary 2023 edition of WMO-No. 8. Geneva, Switzerland. Available at: https://community.wmo.int/en/activity-areas/imop/wmo-no.8/preliminary-2023-edition-wmo-no-8
- ZHANG, X. – CHEN, K. – LI, K. 2023. Detection of meteorological influence on bread wheat quality in Hebei province, China based on the gradient boosting decision tree. In Frontiers in Plant Science, vol. 14, article no. 1083665. DOI: https://doi.org/10.3389/fpls.2023.1083665