Have a personal or library account? Click to login
Response of Different Types of Chocolate to Impact Loading – Direct Impact Cover

Response of Different Types of Chocolate to Impact Loading – Direct Impact

Open Access
|May 2025

References

  1. BALDINO, N. – GABRIELE, D. – MIGLIORI, M. 2010. The influence of formulation and cooling rate on the reological properties of chocolate. In European Food Research and Technology, vol. 231, no. 6, pp. 821–828. DOI: https://doi.org/10.1007/s00217-010-1334-3
  2. BIKOS, D. – SAMARAS, G. – CANN, P. – MASEN, M. – HARDALUPAS, Y. – HARTMANN, C. – VIEIRA, J. – CHARALAMBIDES, M. N. 2021. Effect of micro-aeration on the mechanical behaviour of chocolates and implications for oral processing. In Food and Function, vol. 12, no. 11, pp. 4826–4886. DOI: https://doi.org/10.1039/d1fo00045d
  3. BIKOS, D. – SAMARAS, G. – CANN, P. – MASEN, M. – HARDALUPAS, Y. – VIEIRA, J. – HARTMANN, C. – HUTHWAITE, P. – LAN, B. – CHARALAMBIDES, M. N. 2023. Destructive and non-destructive mechanical characterisation of chocolate with different levels of porosity under various modes of deformation. In Journal of Materials Science, vol. 58, no. 11, pp. 5104–5127. DOI: https://doi.org/10.1007/s10853-023-08324-7
  4. BHATTACHARYYA, T. – JOSHI, Y. M. 2022. Effect of thermal and mechanical rejuvenation on the rheological behavior of chocolate. In Physics of Fluids, vol. 34, no. 3, article no. 037111. DOI: https://doi.org/10.1063/5.0083335
  5. CARVALHO-DA-SILVA, A. M. – VAN DAMME, I. – WOLF, B. – HORT, J. 2011. Characterisation of chocolate eating behaviour. In Physiology and Behavior, vol. 104, no. 5, pp. 929–933. DOI: https://doi.org/10.1016/j.physbeh.2011.06.001
  6. COUQUE, H. 2014. The use of the direct impact Hopkinson pressure bar technique to describe thermally activated and viscous regimes of metallic materials. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, no. 2023, article no. 20130218. DOI: https://doi.org/10.1098/rsta.2013.0218
  7. GLICERINA, V. – BALESTRA, F. – DALLA ROSA, M. – ROMANI, S. 2013. Rheological, textural and calorimetric modifications of dark chocolate during process. In Journal of Food Engineering, vol. 119, no. 1, pp. 173–179. DOI: https://doi.org/10.1016/j.jfoodeng.2013.05.012
  8. GÓMEZ, F. J. – SALAZAR, A. – MARTÍNEZ, M. – RANA, S. K. – RODRÍGUEZ, J. 2022. Fracture of notched samples of chocolate. In Theoretical and Applied Fracture Mechanics, vol. 121, article no. 103477. DOI: https://doi.org/10.1016/j.tafmec.2022.103477
  9. GUO, X. – HEUZÉ, T. – OTHMAN, R. – RACINEUX, G. 2014. Inverse identification at very high strain rate of the Johnson-Cook constitutive model on the Ti-6Al-4V alloy with a specially designed direct-impact Kolsky bar device. In Strain, vol. 50, no. 6, pp. 527–538. DOI: https://doi.org/10.1111/str.12114
  10. HENDRIK, N. J. – MARCHESINI, F. H. – VAN DE WALLE, D. – DEWETTINCK, K. 2023. Accurate evaluation of the flow properties of molten chocolate: Circumventing artefacts. In Food Analytical Methods, vol. 16, no. 1, pp. 190–205. DOI: https://doi.org/10.1007/s12161-022-02406-z
  11. KIUMARSI, M. – RAFE, A. – YEGANEHZAD, S. 2017. Effect of different bulk sweeteners on the dynamic oscillatory and shear rheology of chocolate. In Applied Rheology, vol. 27, no. 6, article no. 64123. DOI: https://doi.org/10.3933/APPLRHEOL-27-64123
  12. KUMBÁR, V. – KOUŘILOVÁ, V. – DUFKOVÁ, R. – VOTAVA, J. – HŘIVNA, L. 2021. Rheological and pipe flow properties of chocolate masses at different temperatures. In Foods, vol. 10, no. 11, article no. 2519. DOI: https://doi.org/10.3390/foods10112519
  13. KUMBÁR, V. – TRNKA, J. – KOUŘILOVÁ, V. – DUFKOVÁ, R. – VOTAVA, J. – NEDOMOVÁ, Š. – HŘIVNA, L. – POLCAR, A. – BUCHAR, J. 2023. High strain rate behaviour of different types of chocolate. In Journal of Food Engineering, vol. 346, article no. 111438. DOI: https://doi.org/10.1016/j.jfoodeng.2023.111438
  14. KUMBÁR, V. – TRNKA, J. – KOUŘILOVÁ, V. – DUFKOVÁ, R. – VOTAVA, J. – ČUPERA, J. – NEDOMOVÁ, Š. – HŘIVNA, L. – BUCHAR, J. 2024. Stress wave attenuation in chocolate. In Journal of Food Engineering, vol. 374, article no. 112037. DOI: https://doi.org/10.1016/j.jfoodeng.2024.112037
  15. LE RÉVÉREND, B. – SAUCY, F. – MOSER, M. – LORET, C. 2016. Adaptation of mastication mechanics and eating behaviour to small differences in food texture. In Physiology & Behavior, vol. 165, pp. 136–145. DOI: https://doi.org/10.1016/j.physbeh.2016.07.010
  16. MARKOVSKY, P. E. – JANISZEWSKI, J. – STASIUK, O. O. – SAVVAKIN, D. G. – ORYSHYCH, D. V. – DZIEWIT, P. 2023. Mechanical energy absorption ability of titanium-based porous structures produced by various powder metallurgy approaches. In Materials, vol. 16, no. 9, article no. 3530. DOI: https://doi.org/10.3390/ma16093530
  17. MOHAMAD, N. J. – GRAY, D. – WOLF, B. 2020. Spinach leaf and chloroplast lipid: A natural rheology modifier for chocolate? In Food Research International, vol. 133, article no. 109193. DOI: https://doi.org/10.1016/j.foodres.2020.109193
  18. NEDOMOVÁ, Š. – TRNKA, J. – BUCHAR, J. 2013. Tensile strength of dark chocolate. In Acta Technologica Agriculturae, vol. 16, no. 3, pp. 71–73. DOI: https://doi.org/10.2478/ata-2013-0018
  19. NEDOMOVÁ, Š. – TRNKA, J. – KOUŘILOVÁ, V. – DUFKOVÁ, R. – VOTAVA, J. – HŘIVNA, L. – KUMBÁR, V. – BUCHAR, J. 2023. Acoustic properties and low strain rate behavior of different types of chocolate. In International Journal of Food Properties, vol. 26, no. 1, pp. 842–854. DOI: https://doi.org/10.1080/10942912.2023.2189087
  20. SHUI-SHENG, Y. – YU-BIN, L. – YONG, C. 2013. The strain rate effect of engineering materials and its unified model. In Latin American Journal of Solids and Structures, vol. 10, no. 4, pp. 833–844. DOI: https://doi.org/10.1590/s1679-78252013000400010
  21. STEIN, E. M. – SHAKARCHI, R. 2003. Fourier Analysis: An introduction. New Jersey (U.S.) : Princeton University Press, 328 pp. ISBN 0-691-11384-X
  22. STOICA, P. – MOSES, R. L. 1997. Introduction to Spectral Analysis. New Jersey (U.S.): Prentice Hall, 319 pp. ISBN 0-132-58419-0
  23. TALANSIER, E. – BACCONNIER, A. – CATON, F. – CHASTEL, C. – COSTA, L. – GUNES, D. Z. – ROUX, D. C. D. 2019. Accurate methodology to determine slip velocity, yield stress and the constitutive relation for molten chocolate. In Journal of Food Engineering, vol. 244, pp. 220–227. DOI: https://doi.org/10.1016/j.jfoodeng.2018.09.031
  24. WANG, W. – YANG, J. – DENG, G. Q. – CHEN, X. 2023. Theoretical analysis of stress equilibrium of linear hardening plastic specimen during SHPB tests. In Experimental Mechanics, vol. 63, no. 8, pp. 1353–1369. DOI: https://doi.org/10.1007/s11340-023-00994-3
  25. ZHAO, H. – LI, B. – JAMES, B. J. 2018. Structure-fracture relationships in chocolate systems. In LWT, vol. 96, pp. 281–287. DOI: https://doi.org/10.1016/j.lwt.2018.05.045
Language: English
Page range: 105 - 116
Published on: May 15, 2025
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Vojtěch Kumbár, Jan Trnka, Jiří Votava, Veronika Šafránková, Renáta Dufková, Martin Fajman, Jiří Čupera, Šárka Nedomová, Luděk Hřivna, Jaroslav Buchar, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.