Have a personal or library account? Click to login
Investigating the Effects of Spectroscopic Method in Estimating Soluble Solid Content Values and Firmness of Cherries from an Environmental Point of View: Prediction of Environmental Parameters with Machine Learning Method Cover

Investigating the Effects of Spectroscopic Method in Estimating Soluble Solid Content Values and Firmness of Cherries from an Environmental Point of View: Prediction of Environmental Parameters with Machine Learning Method

Open Access
|Mar 2025

References

  1. ARDABILI, S. F. – MAHMOUDI, A. – GUNDOSHMIAN, T. M. 2016. Modeling and simulation controlling system of HVAC using fuzzy and predictive (radial basis function, RBF) controllers. In Journal of Building Engineering, vol. 6, pp. 301–308. https://doi.org/10.1016/j.jobe.2016.04.010
  2. ARDABILI, S. F. 2014. Simulation and comparison of control system in mushroom growing rooms environment. Tabriz, Iran : University of Tabriz, 112 pp. (Diploma thesis)
  3. ASLANTAS, R. – ANGIN, I. – BOYDAS, M. G. – OZKAN, G. – KARA, M. 2016. Fruit characteristics and detachment parameters of sour cherry (Prunus cerasus L. cv.‘Kütahya’) as affected by various maturity stages. In Erwerbs-Obstbau, vol. 58, pp. 127–134. DOI: https://doi.org/127-134.10.1007/s10341-016-0270-1
  4. AYEBAZIBWE, U. 2023. Effects of post-harvest handling on maize farmers’ income in Nkoma Sub-County Kamwenge District. In Journal of Crop Techology and Agriculture Science, vol. 5, no. 2, pp. 11–16.
  5. BONORA, E. – STEFANELLI, D. – COSTA, G. 2013. Nectarine fruit ripening and quality assessed using the index of absorbance difference (IAD). In International Journal of Agronomy, vol. 2013, article no. 242461. DOI: https://doi.org/10.1155/2013/242461
  6. CASSON, A. – BEGHI, R. – GIOVENZANA, V. – FIORINDO, I. – TUGNOLO, A. – GUIDETTI, R. 2020. Environmental advantages of visible and near infrared spectroscopy for the prediction of intact olive ripeness. In Biosystems Engineering, vol. 189, pp. 1–10. DOI: https://doi.org/10.1016/j.biosystemseng.2019.11.003
  7. CASSON, A. – BEGHI, R. – GIOVENZANA, V. – FIORINDO, I. – TUGNOLO, A. – GUIDETTI, R. 2019. Visible near infrared spectroscopy as a green technology: An environmental impact comparative study on olive oil analyses. In Sustainability, vol. 11, no. 9, article no. 2611. DOI: https://doi.org/10.3390/su11092611
  8. FLORKOWSKI, W. J. – BANKS, N. H. – SHEWFELT, R. L. – PRUSSIA, S. E. 2022. Postharvest handling: A systems approach. Cambridge, Massachusetts : Academic Press, 702 pp. ISBN 978-0-12-822845-6. DOI: https://doi.org/10.1016/C2019-0-04144-1
  9. HASHEMI, F. 2021. Modeling and investigation of the life cycle of the hybrid power generation process from the diesel engine. Ardabil, Iran : University of Mohaghegh Ardabili, 98 pp. (Diploma thesis)
  10. INFANTE, R. – CONTADOR, L. – RUBIO, P. – MESA, K. – MENESES, C. 2011. Non-destructive monitoring of flesh softening in the black-skinned Japanese plums ‘Angeleno’ and ‘Autumn beaut’ on-tree and postharvest. In Postharvest Biology and Technology, vol. 61, no. 1, pp. 35–40. DOI: https://doi.org/10.1016/j.postharvbio.2011.01.003
  11. JOLLIET, O. – MARGNI, M. – CHARLES, R. – HUMBERT, S. – PAYET, J. – REBITZER, G. –ROSENBAUM, R. 2003. IMPACT 2002+: A new life cycle impact assessment methodology. In International Journal of Life Cycle Assessment, vol. 8, no. 6, pp. 324–330. DOI: https://doi.org/10.1007/BF02978505
  12. KIRA, K. – RENDELL, L. A. 1992. A practical approach to feature selection. In SLEEMAN, D. – EDWARDS, P. (Eds). Machine Learning Proceedings 1992. Morgan Kaufmann, pp. 249–256. ISBN 9781558602472. DOI: https://doi.org/10.1016/B978-1-55860-247-2.50037-1
  13. LAFUENTE, V. – HERRERA, L. J. – GHINEA, R. – VAL, J. – NEGUERUELA, A. I. 2019. Determination of soluble solids content in Prunus avium by Vis-NIR equipment using linear and non-linear regression methods. In Spanish Journal of Agricultural Research, vol. 17 no. 4, article no. e0207. DOI: https://doi.org/10.5424/sjar/2019174-13891
  14. LIU, Y. L. – CHEN, Y.-R. – WANG, C. Y. – CHAN, D. E. – KIM, M. S. 2005. Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. In Applied Spectroscopy, vol. 59, no. 1, pp. 78–85. DOI: https://doi.org/10.1366/0003702052940422
  15. MUNAWAR, A. A. – DEVIANTI – SATRIYO, P. – BAHARI, S. A. 2022. Near infrared spectroscopy: Rapid and simultaneous approach to predict the fixed carbon, volatile matter and ash contents in biochar produced from agricultural residues. In Acta Technologica Agriculturae, vol. 25, no. 1, pp. 1–6. DOI: https://doi.org/10.2478/ata-2022-0001
  16. MOMENY, M. – JAHANBAKHSHI, A. – JAFARNEZHAD, K. – ZHANG, Y.-D. 2020. Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. In Postharvest Biology and Technology, vol. 166, article no. 111204. DOI: https://doi.org/10.1016/j.postharvbio.2020.111204
  17. NAGPALA, E. G. L. – NOFERINI, M. – FARNETI, B. – PICCININI, L. – COSTA, G. 2017. Cherry-Meter: An innovative non-destructive (vis-NIR) device for cherry fruit ripening and quality assessment. In Acta Horticulturae, vol. 1161, pp. 491–496. DOI: https://doi.org/10.17660/ActaHortic.2017.1161.78
  18. NAKANISHI, K. 1962. Infrared Absorption Spectroscopy, Practical. Nankodo Company Limited, Tokyo, Japan; Holden-Day, San Francisco, USA, 233 pp.
  19. NOWAKOWSKI, T. – NOWAKOWSKI, M. 2018. Assessment of tree sprouts pruning with various types of cutting units. In Agricultural Engineering, vol. 22, no. 1, pp. 95–103. DOI: https://doi.org/10.1515/agriceng-2018-0009
  20. PAPPAS, C. S. – TAKIDELLI, C. – TSANTILI, E. – TARANTILIS, P. A. – POLISSIOU, M. G. 2011. Quantitative determination of anthocyanins in three sweet cherry varieties using diffuse reflectance infrared Fourier transform spectroscopy. In Journal of Food Composition and Analysis, vol. 24, no. 1, pp. 17–21. DOI: https://doi.org/10.1016/j.jfca.2010.07.001
  21. POURDARBANI, R. – SABZI, S. – ARRIBAS, J. I. 2021. Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data. In Heliyon, vol. 7, no. 9, article no. e07942. DOI: https://doi.org/10.1016/j.heliyon.2021.e07942
  22. SHAO, Y. – XUAN, G. – HU, Z. – GAO, Z. – LIU, L. 2019. Determination of the bruise degree for cherry using Vis-NIR reflection spectroscopy coupled with multivariate analysis. In PLoS One, vol. 14, no. 9, article no. e0222633. DOI: https://doi.org/10.1371/journal.pone.0222633
  23. SIEDLISKA, A. – BARANOWSKI, P. – ZUBIK, M. – MAZUREK, W. 2017. Detection of pits in fresh and frozen cherries using a hyperspectral system in transmittance mode. In Journal of Food Engineering, vol. 215, pp. 61–71. DOI: https://doi.org/10.1016/j.jfoodeng.2017.07.028
  24. SUHANDY, D. – YULIA, M. 2021. Classification of Lampung robusta specialty coffee according to differences in cherry processing methods using UV spectroscopy and chemometrics. In Agriculture, vol. 11, no. 2, article no. 109. DOI: https://doi.org/10.3390/agriculture11020109
  25. SZABO, G. – VITALIS, F. – HORVATH-MEZOFI, Z. – GOB, M. – AGUINAGA BOSQUEZ, J. P. – GILLAY, Z. – ZSOM, T. – NGUYEN, L. L. P. – HITKA, G. – KOVACS, Z. – FRIEDRICH, L. 2023. Application of near infrared spectroscopy to monitor the quality change of sour cherry stored under modified atmosphere conditions. In Sensors, vol. 23, no. 1, article no. 479. DOI: https://doi.org/10.3390/s23010479
  26. URBANOWICZ, R. J. – OLSON, R. S. – SCHMITT, P. – MEEKER, M. – MOORE, J. H. 2018. Benchmarking relief-based feature selection methods for bioinformatics data mining. In Journal of Biomedical Informatics, vol. 85, pp. 168–188. DOI: https://doi.org/10.1016/j.jbi.2018.07.015
  27. XING, J. – GUYER, D. 2008. Detecting internal insect infestation in tart cherry using transmittance spectroscopy. In Postharvest Biology and Technology, vol. 49, no. 3, pp. 411–416. DOI: https://doi.org/10.1016/j.postharvbio.2008.03.018
  28. ZIOSI, V. – NOFERINI, M. – FIORI, G. – TADIELLO, A. – TRAINOTTI, L. – CASADORO, G. – COSTA, G. 2008. A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. In Postharvest Biology and Technology, vol. 49, no. 3, pp. 319–329. DOI: https://doi.org/10.1016/j.postharvbio.2008.01.017
Language: English
Page range: 17 - 25
Published on: Mar 4, 2025
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Naim Shirzad, Gholamhossein Shahgholi, Sina Ardabili, Mariusz Szymanek, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.