References
- ASSAAD, M. 2020. Non-destructive, non-invasive, in-line real-time phase-based reflectance for quality monitoring of fruit. In International Journal on Smart Sensing and Intelligent Systems, vol. 13, no. 1, pp. 1–10. DOI: https://doi.org/10.21307/ijssis-2020-009
- BENELLI, A. – CEVOLI, C. – FABBRI, A. – RAGNI, L. 2022. Ripeness evaluation of kiwifruit by hyperspectral imaging. In Biosystems Engineering, vol. 223, part B, pp. 42–52. DOI: https://doi.org/10.1016/j.biosystemseng.2021.08.009
- CHEŁPIŃSKI, P. – OCHMIAN, I. – FORCZMAŃSKI, P. 2019. Sweet cherry skin colour measurement as an non-destructive indicator of fruit maturity. In Acta Universitatis Cibiniensis. Series E: Food Technology, vol. 23, no. 2, pp. 157–166. DOI: https://doi.org/10.2478/aucft-2019-0019
- EBRAHIMI, S. – POURDARBANI, R. – SABZI, S. – ROHBAN, M. H. – ARRIBAS, J. I. 2023. From harvest to market: Non-destructive bruise detection in kiwifruit using convolutional neural networks and hyperspectral imaging. In Horticulturae, vol. 9, no. 8, article no. 936. DOI: https://doi.org/10.3390/horticulturae9080936
- GEYER, M. – HEROLD, B. – ZUDE, M. – TRUPPEL, I. 2007. Nondestructive evaluation of apple fruit maturity on the tree. In Journal of Fruit and Ornamental Plant Research, vol. 66, no. 1, pp. 161–169. DOI: https://doi.org/10.2478/v10032-007-0018-4
- KE, J. – ZHIQIANG, G. – YUNLIU, Z. – GANG, D. 2023. Hyperspectral imaging-based quality classification for kiwifruit by incorporating three-dimensional convolution neural network and haar wavelet filter. In Laser and Optoelectronics Progress, vol. 60, no. 20, pp. 41–50. DOI: https://doi.org/10.3788/LOP223142
- LAZIM, S. S. R. M. – NAWI, M. N. – BEJO, S. K. – SHARIFF, A. R. M. – ABDULLAH, N. 2022. Prediction and classification of soluble solid contents to determine the maturity level of watermelon using visible and shortwave near infrared spectroscopy. In International Food Research Journal, vol. 29, no. 6, pp. 1372–1379. DOI: https://doi.org/10.47836/ifrj.29.6.13
- LI, M. – PULLANAGARI, R. – YULE, I. – EAST, A. 2022. Segregation of ‘Hayward’ kiwifruit for storage potential using Vis-NIR spectroscopy. In Postharvest Biology and Technology, vol. 189, article no. 111893. DOI: https://doi.org/10.1016/j.postharvbio.2022.111893
- LI, X. – WEI, Y. – XU, J. – FENG, X. – WU, F. – ZHOU, R. – JIN, J. – XU, K. – YU, X. – HE, Y. 2018. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. In Postharvest Biology and Technology, vol. 143, pp. 112–118. DOI: https://doi.org/10.1016/j.postharvbio.2018.05.003
- LUE, Q. – TANG, M. – CAI, J.-R. – LU, H. – CHAITEP, S. 2010. Selection of efficient wavelengths in NIR spectrum for determination of dry matter in kiwi fruit. In Maejo International Journal of Science and Technology, vol. 4, no. 1, pp. 113–124.
- NIU, C. – GUO, H. – WEI, J. – SAJID, M. – YUAN, Y. – YUE, T. 2018. Fourier transform near-infrared spectroscopy and chemometrics to predict Zygosacchromyces rouxii in apple and kiwi fruit juices. In Journal of Food Protection, vol. 81, no. 8, pp. 1379–1385. DOI: https://doi.org/10.4315/0362-028X.JFP-17-512
- ONUR, T. Ö. 2022. Improved image denoising using wavelet edge detection based on Otsu’s thresholding. In Acta Polytechnica Hungarica, vol. 19, no. 2, pp. 79-92. DOI: https://doi.org/10.12700/APH.19.2.2022.2.5
- REIS-PEREIRA, M. – TOSIN, R. – MARTINS, R. – NEVES DOS SANTOS, F. – TAVARES, F. – CUNHA, M. 2022. Kiwi plant canker diagnosis using hyperspectral signal processing and machine learning: detecting symptoms caused by Pseudomonas syringae pv. actinidiae. In Plants, 11, no. 16, article no. 2154. DOI: https://doi.org/10.3390/plants11162154
- ROSARIO, S. F. – THANGADURAI, K. 2015. RELIEF: feature selection approach. In International Journal of Innovative Research and Development, vol. 4, no. 11, pp. 218–224.
- SARKAR, S. – BASAK, J. K. – MOON, B. E. – KIM, H. T. 2020. A comparative study of PLSR and SVM-R with various preprocessing techniques for the quantitative determination of soluble solids content of hardy kiwi fruit by a portable Vis/NIR spectrometer. In Foods, vol. 9, no. 8, article no. 1078. DOI: https://doi.org/10.3390/foods9081078
- SATPAL, D. – KAUR, J. – BHADARIYA, V. – SHARMA, K. 2021. Actinidia deliciosa (kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization, and commercialization. In Journal of Food Processing and Preservation, vol. 45. DOI: https://doi.org/10.1111/jfpp.15588
- SUTHAHARAN, S. 2016. Support vector machine. In Machine Learning Models and Algorithms for Big Data Classification. Thinking with Examples for Effective Learning. New York : Springer, pp. 207–235. eISBN 978-1-4899-7641-3. DOI: https://doi.org/10.1007/978-1-4899-7641-3_9
- TAGHINEZHAD, E. – RASOOLI SHARABIANI, V. – SHAHIRI, M. – MOINFAR, A. – SZUMNY, A. 2023. Predicting quality properties of pears during storage using hyper spectral imaging system. In Agriculture, vol. 13, no. 10, article no. 1913. DOI: https://doi.org/10.3390/agriculture13101913
- URBANOWICZ, R. J. – MEEKER, M. – LA CAVA, W. – OLSON, R. S. – MOORE, J. H. 2018. Relief-based feature selection: Introduction and review. In Journal of Biomedical Informatics, vol. 85, pp. 189–203. DOI: https://doi.org/10.1016/j.jbi.2018.07.014
- WANG, H. – PENG, J. – XIE, C. – BAO, Y. – HE, Y. 2015. Fruit quality evaluation using spectroscopy technology: A review. In Sensors, vol. 15, no. 5, pp. 11889–11927. DOI: https://doi.org/10.3390/s150511889