Have a personal or library account? Click to login
Evaluation of Service Brake Braking of Selected Group of Vehicles Depending on Wear of Brake System‘s Parts Cover

Evaluation of Service Brake Braking of Selected Group of Vehicles Depending on Wear of Brake System‘s Parts

Open Access
|Jun 2024

References

  1. BELOEV, I. 2021. Development and evaluation of personal urban concept vehicle powered by a hydrogen fuel cell. In Acta Technologica Agriculturae, vol. 24, no. 3, pp. 112–118. DOI: https://doi.org/10.2478/ata-2021-0019
  2. BOGOMOLOV, V. – KLIMENKO, V. – LEONTIEV, D. – RYZYH, L. – SMYRNOV, O. – KHOLODOV, M. 2020. Improving the brake control effectiveness of vehicles equipped with a pneumatic brake actuator. In Science & Technique, vol. 19, no. 1, pp. 55–62. DOI: https://doi.org/10.21122/2227-1031-2020-19-1-55-62
  3. GERLICI, J. – KRAVCHENKO, K. – HAUSER, V. – GORBUNOV, M. – LACK, T. – MOGILA, V. 2020. Innovative technical solutions to improve the cooling efficiency of friction brake elements. In GOPALAKRISHNAN, K. – PRENTKOVSKIS, O. – JACKIVA, I. – JUNEVIČIUS, R. (eds). TRANSBALTICA XI: Transportation Science and Technology. TRANSBALTICA 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Cham : Springer, pp. 341–349. DOI: https://doi.org/10.1007/978-3-030-38666-5_36
  4. HE, Y. – WANG, Y. – WU, F. – YANG, R. – WANG, P. – SHE, S. – REN, D. 2023. Temperature monitoring of vehicle brake drum based on dual light fusion and deep learning. In Infrared Physics and Technology, vol. 133, article no. 104823. DOI: https://doi.org/10.1016/j.infrared.2023.104823
  5. HUANG, W. – FAN, Y. – YU, M. 2020. Research on loaded brake performance test of trucks. In International Journal of Heavy Vehicle Systems, vol. 27, no. 5, pp. 648–662. DOI: https://doi.org/10.1504/IJHVS.2020.111256
  6. KOLLA, E. – ONDRUŠ, J. – GOGOLA, M. – ŠARIĆ, Z. 2020. Braking characteristics of the specified modern electric vehicle during intensive braking. In Advances in Science and Technology Research Journal, vol. 14, no. 3, pp. 125–134. DOI: https://doi.org/10.12913/22998624/122197
  7. KUCHAR, P. – JANOŠKO, I. – HOLÚBEK, M. – ČEDÍK, J. – PEXA, M. 2022. The accuracy assessment of devices used for distance measuring in dynamic vehicle tests. In Acta Technologica Agriculturae, vol. 25, no. 3, pp. 150–156. DOI: https://doi.org/10.2478/ata-2022-0023
  8. LEONTIEV, D. N. – BOGOMOLOV, V. A. – KLYMENKO, V. I. – RYZHYH, L. A. – LOMAKA, S. I. – SUHOMLIN, A. V. – KURIPKA, A. V. – FROLOV, A. A. 2022. About braking of wheeled vehicle equipped with automated brake control system. In Science & Technique, vol. 21, no. 1, pp. 63–72. DOI: https://doi.org/10.21122/2227-1031-2022-21-1-63-72
  9. MAČUŽIĆ, S. – SAVELJIĆ, I. – LUKIĆ, J. – GLIŠOVIĆ, J. – FILIPOVIĆ, N. 2015 Thermal analysis of solid and vented disc brake during the braking process. In Journal of Serbian Society for Computational Machines, vol. 9, no. 2, pp. 19–26. DOI: https://doi.org/10.5937/jsscm1502019M
  10. Mădălin-Florin, P. – NICOLAE, V. 2019. Study of brake system parameters for commercial vehicles. In BURNETE, N. – VARGA, B. (eds). Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018). Cham : Springer, pp. 686–694. DOI: https://doi.org/10.1007/978-3-319-94409-8_80
  11. MILLER, J. I. – CEBON, D. 2010. A high performance pneumatic braking system for heavy vehicles. In Vehicle System Dynamics, vol. 48, no. 1, pp. 373–392. DOI: https://doi.org/10.1080/00423111003774472
  12. MIN, K. – YEON, K. – JO, Y. – SIM, G. – SUNWOO, M. – HAN, M. 2020. Vehicle deceleration prediction based on deep neural network at braking conditions. In International Journal of Automotive Technology, vol. 21, pp. 91–102. DOI: https://doi.org/10.1007/s12239-020-0010-2
  13. MOHAMMED, A. Q. – HUSSAIN, I. Y. – ALI, A. H. – ABDULLAH, O. I. 2023. Experimental and numerical analysis for thermal problem of frictional brake system. In Computational Thermal Sciences: An International Journal, vol. 15, no. 4, pp. 55–68. DOI: https://doi.org/10.1615/ComputThermalScien.v15.i4.50
  14. MONDAL, S. – NANDI, A. 2023. Improvement of braking system towards maintaining constant brake pedal feel during vehicle deceleration. In Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, article no. 237. DOI: https://doi.org/10.1007/s40430-023-04146-5
  15. POPA, M. F. – CAPĂTĂ, M. S. D. – BURNETE, N. 2020. Experimental research on brake behavior for different types of commercial vehicles. In DUMITRU, I. – COVACIU, D. – RACILA, L. – ROSCA, A. (eds). 30th SIAR International Congress of Automotive and Transport Engineering. SMAT 2019. Cham : Springer, 406–413. DOI: https://doi.org/10.1007/978-3-030-32564-0_48
  16. KUMAR, V. V. – KUMARAN, S. S. 2019. Friction material composite: types of brake friction material formulations and effects of various ingredients on brake performance – a review. In Materials Research Express, vol. 6, article no. 082005. DOI: https://doi.org/10.1088/2053-1591/ab2404
  17. SLOVAK REPUBLIC. Act no. 74/2018 Methodical instruction for carrying out inspections of brake systems of vehicles of categories M2, M3, N2, N3, O3 and O4 during technical inspections.
  18. STRAKY, H. – KOCHEM, M. – SCHMITT, J. – ISERMANN, R. 2003. Influences of braking system faults on vehicle dynamics. In Control Engineering Practice, vol. 11, no. 3, pp. 337–343. DOI: https://doi.org/10.1016/S0967-0661(02)00301-5
  19. ŚWIDERSKI, A. – BORUCKA, A. – JACYNA-GOŁDA, I. – SZCZEPAŃSKI, E. 2019. Wear of brake system components in various operating conditions of vehicle in the transport company. In Eksploatacja i Niezawodność – Maintenance and Reliability, vol. 21, no. 1, pp.1–9. DOI: https://doi.org/10.17531/ein.2019.1.1
  20. TOMA, M. – ANDREESCU, C. – MICU, D. 2017. Comparative study on the lateral run-out of friction surfaces measurement of brake discs using a brake roller tester and a dial gauge. In MATEC Web of Conferences. 21st Innovative Manufacturing Engineering & Energy International Conference – IManE&E 2017, vol. 112, article no. 07010. DOI: https://doi.org/10.1051/matecconf/201711207010
  21. WEI, L. – WANG, X. – LIU, H. – LI, L. 2022. System modeling, experimental validation and pressure estimation of the pneumatic braking system. In Mechanical Systems and Signal Processing, vol. 187, article no. 109938. DOI: https://doi.org/10.1016/j.ymssp.2022.109938
  22. ZHANG, Z. – SUN, N. – CHEN, Y. – AHMADIAN, M. 2021. Detailed modeling of pneumatic braking in long combination vehicles. In SAE International Journal of Commercial Vehicles, vol. 14, no. 3, pp. 245–258. DOI: https://doi.org/10.4271/02-14-03-0020
  23. ZHENG, H. – MA, S. – LIU, Y. 2018. Vehicle braking force distribution with electronic pneumatic braking and hierarchical structure for commercial vehicle. In Proceedings of the Institution of Mechanical Engineers, Part 1: Journal of Systems and Control Engineering, vol. 232, no. 4, pp. 481–493. DOI: https://doi.org/10.1177/0959651818757877
  24. ZULHILMI, I. M. – HEERWAN, M. P. – ASYRAF, S. M. – SOLLEHUDIN, I. M. – ISHAK, I. M. 2020. Experimental study on the effect of emergency braking without anti-lock braking system to vehicle dynamics behaviour. In International Journal of Automotive and Mechanical Engineering (IJAME), vol. 17, no. 2, pp. 7832–7841. DOI: https://doi.org/10.15282/ijame.17.2.2020.02.0583
Language: English
Page range: 101 - 107
Published on: Jun 8, 2024
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Peter Kožuch, Ľubomír Hujo, Jerzy Kaszkowiak, Marietta Markiewicz-Patalon, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.