Have a personal or library account? Click to login
Extension Experts‘ Intentions to use Precision Agricultural Technologies, a Test with the Technology Acceptance Model Cover

Extension Experts‘ Intentions to use Precision Agricultural Technologies, a Test with the Technology Acceptance Model

Open Access
|Jun 2024

References

  1. ADNAN, N. – NORDIN, S. M. – BIN ABU BAKAR, Z. 2017. Understanding and facilitating sustainable agricultural practice: A comprehensive analysis of adoption behaviour among Malaysian paddy farmers. In Land Use Policy, vol. 68, pp. 372–382. DOI: https://doi.org/10.1016/j.landusepol.2017.07.046
  2. ADRIAN, A. M. – NORWOOD, S. H. – MASK, P. L. 2005. Producers’ perceptions and attitudes toward precision agriculture technologies. In Computers and Electronics in Agriculture, vol. 48, no. 3, pp. 256–271. DOI: https://doi.org/10.1016/j.compag.2005.04.004
  3. AHMADI, K. – EBADZADEH, H. – ABDSHAH, H. – KAZEMIAN, A. – RAFIEI, M. 2017. Agricultural statistics for the crop year 2015–2016. The first volume: Crops: Ministry of Jihad and Agriculture, Planning and Economic Deputy, Information and Communication Technology Center, Tehran, Iran. (In Persian)
  4. AJZEN, I. 1991. The theory of planned behavior. In Organizational Behavior and Human Decision Processes, vol. 50, no. 2, pp. 179–211. DOI: https://doi.org/10.1016/0749-5978(91)90020-T
  5. AMMANN, J. – UMSTÄTTER, C. – EL BENNI, N. 2022. The adoption of precision agriculture enabling technologies in Swiss outdoor vegetable production: A Delphi study. In Precision Agriculture, vol. 23, pp. 1354–1374. DOI: https://doi.org/10.1007/s11119-022-09889-0
  6. ANSARI, N. – REZAEI-MOGHADDAM, K. – FATEMI, M. 2019. Viewpoints of experts of agricultural jihad centers toward the agricultural extension: New approach in Fars Province. In European Online Journal of Natural and Social Sciences, vol. 8, no. 3, pp. 399–410.
  7. AUBERT, B. A. – SCHROEDER, A. – GRIMAUDO, J. 2012. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. In Decision support systems, vol. 54, no. 1, pp. 510–520. DOI: https://doi.org/10.1016/j.dss.2012.07.002
  8. BAGHERI, A. – BONDORI, A. – ALLAHYARI, M. S. – SURUJLAL, J. 2021. Use of biologic inputs among cereal farmers: Application of technology acceptance model. In Environment, Development and Sustainability, vol. 23, pp. 5165–5181. DOI: https://doi.org/10.1007/s10668-020-00808-9
  9. BARNES, A. P. – SOTO, I. – EORY, V. – BECK, B. – BALAFOUTIS, A. – SÁNCHEZ, B. – VANGEYTE, J. – FOUNTAS, S. – VAN DER WAL, T. – GÓMEZ-BARBERO, M. 2019. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. In Land Use Policy, vol. 80, pp. 163–174. DOI: https://doi.org/10.1016/j.landusepol.2018.10.004
  10. BORGES, J. A. R. – LANSINK, A. G. J. M. O. 2016. Identifying psychological factors that determine cattle farmers’ intention to use improved natural grassland. In Journal of Environmental Psychology, vol. 45, pp. 89–96. DOI: https://doi.org/10.1016/j.jenvp.2015.12.001
  11. CLARK, L. A. – WATSON, D. 1995. Constructing validity: Basic issues in objective scale development. In Psychological Assessment, vol. 7, no. 3, pp. 309–319. DOI: https://doi.org/10.1037/1040-3590.7.3.309
  12. DAVIS, F. D. 1993. User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. In International Journal of Man-Machine Studies, vol. 38, no. 3, pp. 475–487. DOI: https://doi.org/10.1006/imms.1993.1022
  13. DAVIS, F. D. – BAGOZZI, R. P. – WARSHAW, P. R. 1989. User acceptance of computer technology: A comparison of two theoretical models. In Management Science, vol. 35, no. 8, pp. 982–1003. DOI: https://www.jstor.org/stable/2632151
  14. DAVIS, F. D. – VENKATESH, V. 1996. A critical assessment of potential measurement biases in the technology acceptance model: Three experiments. In International Journal of Human-Computer Studies, vol. 45, no. 1, pp. 19–45. DOI: https://doi.org/10.1006/ijhc.1996.0040
  15. EDWARDS-JONES, G. 2006. Modelling farmer decision-making: Concepts, progress and challenges. In Animal Science, vol. 82, no. 6, pp. 783–790. DOI: https://doi.org/10.1017/ASC2006112
  16. FAR, S. T. – REZAEI-MOGHADDAM, K. 2017. Determinants of Iranian agricultural consultants’ intentions toward precision agriculture: Integrating innovativeness to the technology acceptance model. In Journal of the Saudi Society of Agricultural Sciences, vol. 16, no. 3, pp. 280–286. DOI: https://doi.org/10.1016/j.jssas.2015.09.003
  17. FLETT, R. – ALPASS, F. – HUMPHRIES, S. – MASSEY, C. – MORRISS, S. – LONG, N. 2004. The technology acceptance model and use of technology in New Zealand dairy farming. In Agricultural Systems, vol. 80, no. 2, pp. 199–211. DOI: https://doi.org/10.1016/j.agsy.2003.08.002
  18. FLORESS, K. – DE JALÓN, S. G. – CHURCH, S. P. – BABIN, N. – ULRICHSCHAD, J. D. – PROKOPY, L. S. 2017. Toward a theory of farmer conservation attitudes: Dual interests and willingness to take action to protect water quality. In Journal of Environmental Psychology, vol. 53, pp. 73–80. DOI: https://doi.org/10.1016/j.jenvp.2017.06.009
  19. FORNELL, C. – LARCKER, D. F. 1981. Structural equation models with unobservable variables and measurement error: Algebra and statistics. In Journal of Marketing Research, vol. 18, no. 3, pp. 382–388. DOI: https://doi.org/10.2307/3150980
  20. FU, J.-R. – FARN, C.-K. – CHAO, W.-P. 2006. Acceptance of electronic tax filing: A study of taxpayer intentions. In Information and Management, vol. 43, no. 1, pp. 109–126. DOI: https://doi.org/10.1016/j.im.2005.04.001
  21. GANDORFER, M. – SCHLEICHER, S. – ERDLE, K. 2018. Barriers to adoption of smart farming technologies in Germany. In Proceedings of the 14th International Conference on Precision Agriculture. Monticello, IL : International Society of Precision Agriculture, pp. 1–8.
  22. GRANIĆ, A. – MARANGUNIĆ, N. 2019. Technology acceptance model in educational context: A systematic literature review. In British Journal of Educational Technology, vol. 50, no. 5, pp. 2572–2593. DOI: https://doi.org/10.1111/bjet.12864
  23. HENSELER, J. – RINGLE, C. M. – SARSTEDT, M. 2015. A new criterion for assessing discriminant validity in variance-based structural equation modeling. In Journal of the Academy of Marketing Science, vol. 43, pp. 115–135. DOI: https://doi.org/10.1007/s11747-014-0403-8
  24. HENSELER, J. – SARSTEDT, M. 2013. Goodness-of-fit indices for partial least squares path modeling. In Computational Statistics, vol. 28, pp. 565–580. DOI: https://doi.org/10.1007/s00180-012-0317-1
  25. ISPA. 2018. Precision agriculture definition. Available at: https://www.ispag.org/
  26. JAFARI, N. – KARAMI, E. A. – KESHAVARZ, M. 2020. The impacts of the new agricultural extension system on improving knowledge and changing the behavior of farmers in Fars Province. In Iranian Agricultural Extension and Education Journal, vol. 16, no. 2, pp. 21–38. DOI: https://doi.org/10.22034/IAEEJ.2020.243857.1551 (In Persian)
  27. JOKAR, N. K. – NOORHOSSEINI, S. A. – ALLAHYARI, M. S. – DAMALAS, C. A. 2017. Consumers’ acceptance of medicinal herbs: An application of the technology acceptance model (TAM). In Journal of Ethnopharmacology, vol. 207, pp. 203–210. DOI: https://doi.org/10.1016/j.jep.2017.06.017
  28. KOLADY, D. E. – VAN DER SLUIS, E. – UDDIN, M. M. – DEUTZ, A. P. 2021. Determinants of adoption and adoption intensity of precision agriculture technologies: Evidence from South Dakota. In Precision Agriculture, vol. 22, pp. 689–710. DOI: https://doi.org/10.1007/s11119-020-09750-2
  29. KOUFARIS, M. 2002. Applying the technology acceptance model and flow theory to online consumer behavior. In Information Systems Research, vol. 13, no. 2, pp. 205–223.
  30. LEE, Y. – KOZAR, K. A. – LARSEN, K. R. T. 2003. The technology acceptance model: Past, present, and future. In Communications of the Association for Information Systems, vol. 12, no. 50. DOI: https://doi.org/10.17705/1CAIS.01250
  31. MACKENZIE, S. B. – PODSAKOFF, P. M. – JARVIS, C. B. 2005. The problem of measurement model misspecification in behavioral and organizational research and some recommended solutions. In Journal of Applied Psychology, vol. 90, no. 4, pp. 710–730. DOI: https://doi.org/10.1037/0021-9010.90.4.710
  32. MCBRIDE, W. D. – DABERKOW, S. G. 2003. Information and the adoption of precision farming technologies. In Journal of Agribusiness, vol. 21, no. 1, pp. 21–38. DOI: https://doi.org/10.22004/ag.econ.14671
  33. ALJAAFREH, A. – ELZAGZOUG, E. Y. – ABUKHAIT, J. – SOLIMAN, A.-H. – ALJA’AFREH, S. S. – SIVANATHAN, A. – HUGHES, J. 2023. A real-time olive fruit detection for harvesting robot based on Yolo algorithms. In Acta Technologica Agriculturae, vol. 3, no. 3, pp. 121–132. DOI: https://doi.org/10.2478/ata-2023-0017
  34. MILLS, J. – GASKELL, P. – INGRAM, J. – DWYER, J. – REED, M. – SHORT, C. 2017. Engaging farmers in environmental management through a better understanding of behaviour. In Agriculture and Human Values, vol. 34, pp. 283–299. DOI: https://doi.org/10.1007/s10460-016-9705-4
  35. MUN, Y. Y. – JACKSON, J. D. – PARK, J. S. – PROBST, J. C. 2006. Understanding information technology acceptance by individual professionals: Toward an integrative view. In Information & Management, vol. 43, no. 3, pp. 350–363. DOI: https://doi.org/10.1016/j.im.2005.08.006
  36. PATHAK, H. S. – BROWN, P. – BEST, T. 2019. A systematic literature review of the factors affecting the precision agriculture adoption process. In Precision Agriculture, vol. 20, pp. 1292–1316. DOI: https://doi.org/10.1007/s11119-019-09653-x
  37. PAUSTIAN, M. – THEUVSEN, L. 2017. Adoption of precision agriculture technologies by German crop farmers. In Precision Agriculture, vol. 18, pp. 701–716. DOI: https://doi.org/10.1007/s11119-016-9482-5
  38. REICHARDT, M. – JÜRGENS, C. 2009. Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. In Precision Agriculture, vol. 10, pp. 73–94. DOI: https://doi.org/10.1007/s11119-008-9101-1
  39. REZAEI-MOGHADDAM, K. – FATEMI, M. 2019. Strategies for improvement of agricultural extension new approach of Iran. In Iranian Agricultural Extension and Education Journal, vol. 15 no. 2, pp. 112–117. DOI: https://doi.org/10.22034/IAEEJ.2020.199832.1450
  40. REZAEI-MOGHADDAM, K. – SALEHI, S. 2010. Agricultural specialists’ intention toward precision agriculture technologies: Integrating innovation characteristics to technology acceptance model. In African Journal of Agricultural Research, vol. 5, no. 11, pp. 1191–1199.
  41. ROGERS, E. M. 2010. Diffusion of Innovations. 3rd ed. New York : Free Press, 512 pp. ISBN 0029266505.
  42. RÖLING, N. – PRETTY, J. N. 1997. Chapter 20 Extension’s role in sustainable agricultural development. In SWANSON, B. E. – BENTZ, R. P. – SOFRANKO, A. J. (eds). Improving Agricultural Extension: A reference Manual. Rome, Italy : FAO, pp. 181–192. ISBN 92-5-104007-9.
  43. SCHUKAT, S. – HEISE, H. 2021. Towards an understanding of the behavioral intentions and actual use of smart products among German farmers. In Sustainability, vol. 13, no. 12, article no. 6666. DOI: https://doi.org/10.3390/su13126666
  44. SILVA, A. G. – CANAVARI, M. – SIDALI, K. L. 2017. A technology acceptance model of common bean growers’ intention to adopt integrated production in the Brazilian Central Region. In Journal of Land Management, Food and Environment, vol. 68, no. 3, pp. 131–143. DOI: https://doi.org/10.1515/boku-2017-0012
  45. TEO, T. S. H. – SRIVASTAVA, S. C.– JIANG, L. 2008. Trust and electronic government success: An empirical study. In Journal of Management Information Systems, vol. 25, no. 3, pp. 99–132. DOI: https://doi.org/10.2753/MIS0742-1222250303
  46. VECCHIO, Y. – AGNUSDEI, G. P. – MIGLIETTA, P. P. – CAPITANIO, F. 2020. Adoption of precision farming tools: The case of Italian farmers. In International Journal of Environmental Research and Public Health, vol. 17, no. 3, article no. 869. DOI: https://doi.org/10.3390/ijerph17030869
  47. VENKATESH, V. – DAVIS, F. D. 1996. A model of the antecedents of perceived ease of use: Development and test. In Decision Sciences, vol. 27 no. 3, pp. 451–481.
  48. VENKATESH, V. – MORRIS, M. G. – DAVIS, G. B. – DAVIS, F. D. 2003. User acceptance of information technology: Toward a unified view. In MIS Quarterly, vol. 27, no. 3, pp. 425–478. DOI: https://doi.org/10.2307/30036540
  49. WETZELS, M. – ODEKERKEN-SCHRÖDER, G. – VAN OPPEN, C. 2009. Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. In MIS Quarterly, vol. 33, no. 1, pp. 177–195. DOI: https://doi.org/10.2307/20650284
  50. WU, J.-H. – WANG, S.-C. 2005. What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. In Information & Management, vol. 42, no. 5, pp. 719–729. DOI: https://doi.org/10.1016/j.im.2004.07.001
  51. WU, W. W. 2010. Linking Bayesian networks and PLS path modeling for causal analysis. In Expert Systems with Applications, vol. 37, no. 1, pp. 134–139. DOI: https://doi.org/10.1016/j.eswa.2009.05.021
Language: English
Page range: 84 - 91
Published on: Jun 8, 2024
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Asghar Bagheri, Javad Tarighi, Naier Emami, Mariusz Szymanek, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.