Have a personal or library account? Click to login
Comparative Environmental and Economic Analysis of Biomethane Production from Co-Digestion of Rice Straw and Spent Mushroom Compost: Application of Zero-Valent Iron Nanoparticles Cover

Comparative Environmental and Economic Analysis of Biomethane Production from Co-Digestion of Rice Straw and Spent Mushroom Compost: Application of Zero-Valent Iron Nanoparticles

Open Access
|Feb 2024

References

  1. AHMADI-PIRLOU, M. – MESRI GUNDOSHMIAN, T. 2021. The effect of substrate ratio and total solids on biogas production from anaerobic co-digestion of municipal solid waste and sewage sludge. In Journal of Material Cycles and Waste Management, vol. 23, no. 5, pp. 1938–1946. DOI: https://doi.org/10.1007/s10163-021-01264-x
  2. ATHANASOULIA, E. – MELIDIS, P. – AIVASIDIS, A. 2012. Optimization of biogas production from waste activated sludge through serial digestion. In Renewable Energy, vol. 47, pp. 147–151. DOI: https://doi.org/10.1016/j.renene.2012.04.038
  3. BKOOR ALRAWASHDEH, K. A. – AL-ZBOON, K. K. – AL-TABBAL, J. A. – AL-SAMRRAIE, L. A. – AL BSOUL, A. – DAMESH, R. A. – KHASAVNEH, A. – DESSOUKY, Y. – TONBOL, K. – ALI, B. M. – YOUSSEF, E. E. 2023. The effects of nanoparticles-zerovalent iron on sustainable biomethane production through co-digestion of olive mill wastewater and chicken manure. In Fermentation, vol. 9, no. 2, article no. 183. DOI: https://doi.org/10.3390/fermentation9020183
  4. BONU, R. – ANAND, N. – PALANI, S. G. 2023. Impact of thermal pre-treatment on aerobic co-digestion of sewage sludge and landfill leachate. In Materials Today: Proceedings, vol. 72, part 1, pp. 99–103. DOI: https://doi.org/10.1016/j.matpr.2022.06.130
  5. CASALS, E. – BARRENA, R. – GARCÍA, A. – GONZÁLEZ, E. – DELGADO, L. – BUSQUETS-FITÉ, M. – FONT, X. – ARBIOL, J. – GLATZEL, P. – KVASHNINA, K. – SÁNCHEZ, A. – PUNETS, V. 2014. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. In Small, vol. 10, no. 14, pp. 2801–2808. DOI: https://doi.org/10.1002/smll.201303703
  6. CHERUBINI, F. – STRØMMAN, A. H. 2011. Life cycle assessment of bioenergy systems: state of the art and future challenges. In Bioresource Technology, vol. 102, no. 2, pp. 437–451. DOI: https://doi.org/10.1016/j.biortech.2010.08.010
  7. DOAGOI, A. – MOGHADDAM, A. G. – FOOLADI, M. H. 2011. Investigating and modeling the process of biogas production while utilizing the wastes of damask rose distillation. In Iranian Journal of Biosystems Engineering, vol. 42, no. 1, pp. 95–102.
  8. FAISAL, S. – SALMA, E. S. – MALIK, K. – LEE, S. H. – LI, X. 2020. Anaerobic digestion of cabbage and cauliflower biowaste: impact of iron oxide nanoparticles (IONPs) on biomethane and microbial communities alteration. In Bioresource Technology Reports, vol. 12, article no. 100567. DOI: https://doi.org/10.1016/j.biteb.2020.100567
  9. JAFARI-SEJAHROOD, A. – NAJAFI, B. – ARDABILI, S. F. – SHAMSHIRBAND, S. – MOSAVI, A. – CHAU, K. W. 2019. Limiting factors for biogas production from cow manure: energo-environmental approach. In Engineering Applications of Computational Fluid Mechanics, vol. 13, no. 1, pp. 954–966. DOI: https://doi.org/10.1080/19942060.2019.1654411
  10. JEGEDE, A. O. – ZEEMAN, G. – BRUNING, H. 2019. Effect of mixing regimes on cow manure digestion in impeller mixed, unmixed and Chinese dome digesters. In Energies, vol. 12, no. 13, article no. 2540. DOI: https://doi.org/10.3390/en12132540
  11. KRÁTKÝ, L. – JIROUT, T. – NALEZENEC, J. 2012. Lab-scale technology for biogas production from lignocellulose wastes. In Acta Polytechnica, vol. 52, no. 3, pp. 54–59.
  12. LEE, W. – MO, K. – PARK, CH. – KIM, D. – PARK, S. – LEE, D. – KWON, J. – KIM, M. – CUI, F. 2022. Co-digestion of food waste and sewage sludge using the combination of a thermal alkali pre-treatment and a two-stage anaerobic digestion system. In Journal of Chemical Technology and Biotechnology, vol. 98, no. 3, pp. 591–601. DOI: https://doi.org/10.1002/jctb.7133
  13. MATTOCKS, R. – MOSER, M. A. – MOORE, J. A. Y. 2000. Fate of incoming solids to measure manure digester performance. In Animal, agricultural and food processing wastes: Proceedings of the Eighth International Symposium, pp. 187–193. American Society of Agricultural Engineers, St. Joseph, MI, USA.
  14. NAJAFI, B. – ARDABILI, S. F. – SHAMSHIRBAND, S. – CHAU, K. W. 2019. Spent mushroom compost (SMC) as a source for biogas production in Iran. In Engineering Applications of Computational Fluid Mechanics, vol. 13, no. 1, pp. 967–982. DOI: https://doi.org/10.1080/19942060.2019.1658644
  15. NAJAFI, B. – ARDABILI, S.F. 2018. Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC). In Resources, Conservation and Recycling, vol. 133, pp. 169–178. DOI: https://doi.org/10.1016/j.resconrec.2018.02.025
  16. ORNER, K. D. – SMITH, S. – NORDHAL, S. – CHAKRABARTI, A. – BREUNIG, H. – SCOWN, C. D. – LEVERNEZ, H. – NELSON, K. L. – HORVATH, A. 2022. Environmental and economic impacts of managing nutrients in digestate derived from sewage sludge and high-strength organic waste. In Environmental Science and Technology, vol. 56, no. 23, pp. 17256–17265. DOI: https://doi.org/10.1021/acs.est.2c04020
  17. RAHEEM, A. – SINGH SIKARWAR, V. – HE, J. – DASTYAR, W. – DIONYSIOU, D. D. – WANG, W. – ZHAO, M. 2018. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge. In Chemical Engineering Journal, vol. 337, pp. 616–641. DOI: https://doi.org/10.1016/j.cej.2017.12.149
  18. RICHARDS, D. – YABAR, H. 2023. Promoting energy and resource recovery from livestock waste: case study Yuge Farm, Japan. In Case Studies in Chemical and Environmental Engineering, vol. 7, pp. article no. 100299. DOI: https://doi.org/10.1016/j.cscee.2023.100299
  19. ROSSI, E. – PECORINI, I. – FERRARA, G. – IANNELLI, R. 2022. Dry anaerobic digestion of the organic fraction of municipal solid waste: biogas production optimization by reducing ammonia inhibition. In Energies, vol. 15, no. 15, article no. 5515. DOI: https://doi.org/10.3390/en15155515
  20. SALEHI, R. – YUAN, Q. – CHAIPRAPAT, S. 2022. Development of data-driven models to predict biogas production from spent mushroom compost. In Agriculture, vol. 12, no. 8, article no. 1090. DOI: https://doi.org/10.3390/agriculture12081090
  21. SANTOSO, A. – LUKITO, D. C. – SANJAYA, E. H. – SUMARI, S. – WIJAYA, A. R. – PUTRI, D. E. – ASRORI, M. R. 2023. The effect of starter on biogas production of anaerobic digestion of cow manure using active zeolite. In AIP Conference Proceedings, vol. 2569, no. 1, article no. 070011. DOI: https://doi.org/10.1063/5.0112760
  22. SHENG, Q. – LU, Y. – YUAN, S. – LI, X. – DAI, X. – GUO, Y. – DONG, B. 2023. Effect of nitrite on hydrolysis-acidification, biogas production and microbial community in semi-continuous two-phase anaerobic digestion of sewage sludge. In Journal of Environmental Sciences, vol. 126, pp. 434–444. DOI: https://doi.org/10.1016/j.jes.2022.05.020
  23. WEILAND, P. 2010. Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, vol. 85, no. 4, pp. 849–860. DOI: https://doi.org/10.1007/s00253-009-2246-7
  24. ZHANG, Q. – PLUSCHKE, J. – GEIßEN, S. U. 2022. Fenton oxidation as pretreatment for biomass gasification condensate: cost and biomass inhibition evaluation. In Water Science and Technology, vol. 85, no. 7, pp. 2225–2239. DOI: https://doi.org/10.2166/wst.2022.071
  25. ZHOU, D. M. – JIN, S. Y. – WANG, Y. J. – WANG, P. – WENG, N. Y. – WANG, Y. 2012. Assessing the impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in soils. In Soil and Sediment Contamination: An International Journal, vol. 21, no. 1, pp.101–114. DOI: https://doi.org/10.1080/15320383.2012.636778
Language: English
Page range: 1 - 9
Published on: Feb 24, 2024
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Sina Ardabili, Razieh Pourdarbani, Lotfollah Maleki, Gholamhossein Jafari, José Luis Hernandez-Hernandez, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.