Have a personal or library account? Click to login
A 4-DOF SCARA Robotic Arm for Various Farm Applications: Designing, Kinematic Modelling, and Parameterization Cover

A 4-DOF SCARA Robotic Arm for Various Farm Applications: Designing, Kinematic Modelling, and Parameterization

Open Access
|May 2021

References

  1. ACCENTURE. 2017. The Future of Food: New Realities for the Industry. Available at: https://www.accenture.com/us-en/_acnmedia/pdf-70/accenture-future-of-food-new-realities-for-the-industry.pdf
  2. ALIASGARIAN, S. – GHASSEMZADEH, H. R. – MOGHADDAM, M. – GHAFFARI, H.2015. Mechanical damage of strawberry during harvest and postharvest operations. In Acta Technologica Agriculturae, vol. 18, no. 1, pp. 1–5.
  3. AYRE, M. – MC COLLUM, V. – WATERS, W. – SAMSON, P. – CURRO, A. – NETTLE, R. – PASCHEN, J. A. – KING, B. – REICHELT, N. 2019. Supporting and practising digital innovation with advisers in smart farming. In NJAS – Wageningen Journal of Life Sciences, vol. 90–91, no. December, pp. 100302.
  4. BRONSON, K. 2019. Looking through a responsible innovation lens at uneven engagements with digital farming. In NJAS – Wageningen Journal of Life Sciences, vol. 90–91, no. December, pp. 100294.
  5. CVIKLOVIČ, V. – OLEJÁR, M. – HRUBÝ, D. – PALKOVÁ, Z. – LUKÁČ, O. – HLAVÁČ, P. 2016. Navigation algorithm using fuzzy control method in mobile robotics. In Acta Technologica Agriculturae, vol. 19, no. 1, pp. 19–23.
  6. DORWARD, A. 2013. Agricultural labour productivity, food prices and sustainable development impacts and indicators. In Food Policy, vol. 39, pp. 40–50.
  7. FAO. 2012. Global Agriculture Towards 2050. Available at: http://www.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag2030502012_rev.pdf
  8. FAO. 2017. The Future of Food and Agriculture – Trends and Challenges. Rome, 163 pp.
  9. GARNER, J. P. – MEEHAN, C. L. – FAMULA, T. R.– MENCH, J. A. 2006. Genetic, environmental, and neighbor effects on the severity of stereotypies and feather picking in Orange–winged Amazon parrots (Amazona amazonica): An epidemiological study. In Applied Animal Behaviour Science, vol. 96, no. 1–2, pp. 153–68.
  10. KAMATA, T. – ROSHANIANFARD, A. – NOGUCHI, N. 2018. Heavyweight crop harvesting robot – controlling algorithm. In IFAC– PapersOnLine, vol. 51, no 17, pp. 244–49.
  11. KASHKAROV, A. – DIORDIIEV, V. – SABO, A. – NOVIKOV, G. 2018. Semi-autonomous drone for agriculture on the tractor base. In Acta Technologica Agriculturae, vol. 21, no. 4, pp. 149–52.
  12. KLERKX, L. – JAKKU, E. – LABARTHE, P. 2019. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda, In NJAS – Wageningen Journal of Life Sciences, vol. 90–91, pp. 100315.
  13. LI, Z. – MIAO, F. – YANG, Z. – WANG, H. 2019. An anthropometric study for the anthropomorphic design of tomato-harvesting robots. In Computers and Electronics in Agriculture, vol. 163, no. December, pp. 104881.
  14. LIU, Y. – NOGUCHI, N. – ROSHANIANFARD, A. 2017. Simulation and test of an agricultural unmanned airboat maneuverability model. In International Journal of Agricultural and Biological Engineering, vol. 10, no. 1 pp. 88–96.
  15. LUO, L. – TANG, Y. – LU, Q. – CHEN, X. – ZHANG, P. – ZOU, X. 2018. A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard. In Computers in Industry, vol. 99, pp. 130–139.
  16. LV, J. – WANG, Y. – XU, L. – GU, Y. – ZOU, L. – YANG, B. – MA, Z. 2019. A method to obtain the near-large fruit from apple image in orchard for single-arm apple harvesting robot. In Scientia Horticulturae, vol. 257, no 17, pp. 108758.
  17. MARINOUDI, V. – SØRENSEN, C. G. – PEARSON, S. – BOCHTIS, D. 2019. Robotics and labour in agriculture. A context consideration. In Biosystems Engineering, vol. 184, pp. 111–21.
  18. OKTEM, A. 2008. Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems. In Agricultural Water Management, vol. 95, no. 9, pp. 1003–1010.
  19. ROSHANIANFARD, A. 2018. Development of a Harvesting Robot for Heavy-Weight Crop, Ph.D. Thesis, Hokkaido University.10.1016/j.ifacol.2018.08.200
  20. ROSHANIANFARD, A. – KAMATA, T. – NOGUCHI, N. 2018. Performance evaluation of harvesting robot for heavy-weight crops. In IFAC– PapersOnLine, vol. 51, no. 17 pp. 332–338.
  21. ROSHANIANFARD, A. – NOGUCHI, N. 2016. Development of a 5DOF robotic arm (RAVebots–1) applied to heavy products harvesting. In IFAC – Papers OnLine, vol. 49, no. 16, pp. 155–160.
  22. ROSHANIANFARD, A. – NOGUCHI, N. 2017. Development of heavy-weight crops robotic harvesting system (HCRHS). In The 3rd International Conference on Control, Automation and Robotics (ICCAR 2017). Tokyo, Japan.
  23. ROSHANIANFARD, A. – NOGUCHI, N. 2018a. Characterization of pumpkin for a harvesting robot. In IFAC – Papers OnLine, vol. 51, no. 17, pp. 23–30.
  24. ROSHANIANFARD, A. – NOGUCHI, N. 2018b. Kinematics analysis and simulation of a 5DOF articulated robotic arm applied to heavy products harvesting. In Tarim Bilimleri Dergisi, vol. 24, no. 1, pp. 91–104.
  25. ROSHANIANFARD, A. – NOGUCHI, N. – OKAMOTO, H. – ISHII, K. 2020. A review of autonomous agricultural vehicles (the experience of Hokkiado University). In Journal of Terramechanics, vol. 91, pp. 155–183.
  26. ROSHANIANFARD, A. – NOGUCHI, N. – KAMATA, T. 2019. Design and performance of a robotic arm for farm use. In International Journal of Agricultural and Biological Engineering, vol. 12, no. 1, pp. 146–158.
  27. SHIBUSAWA, S. 2018. Digital farming approach changes the context. In IFAC–PapersOnLine, vol. 51, no. 17, pp. 67–69.
  28. WANG, H. – NOGUCHI, N. 2019. Navigation of a robot tractor using the centimeter level augmentation information via Quasi-Zenith Satellite System. In Engineering in Agriculture, Environment and Food, vol. 12, pp. 414–419.
  29. WILLIAMS, H. A. M. – JONES, M. H. – NEJATI, M. – SEABRIGHT, M. J. – BELL, J. – PENHALL, N. D. – BARNETT, J. J. – DUKE, M. D. – SCARFE, A. J. – AHN, H. S. – LIM, J. – MACDONALD, B. A. 2019. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. In Biosystems Engineering, vol. 181, pp. 140–156.
  30. XIONG, Y. – PENG, C. – GRIMSTAD, L. – FROM, P. J. – ISLER, V. 2019. Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper. In Computers and Electronics in Agriculture, vol. 157, pp. 392–402.
  31. ZHANG, Z. – NOGUCHI, N. – ISHII, K. – YANG, L. – ZHANG, C. 2013. Development of a robot combine harvester for wheat and paddy harvesting. In IFAC Proceedings Volumes, vol. 46, no. 4, pp. 45–48.
Language: English
Page range: 61 - 66
Published on: May 21, 2021
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Ali Roshanianfard, Du Mengmeng, Samira Nematzadeh, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.