Have a personal or library account? Click to login
A Coupled Insulin and Meal Effect Neuro-Fuzzy Model for The Prediction of Blood Glucose Level in Type 1 Diabetes Mellitus Patients. Cover

A Coupled Insulin and Meal Effect Neuro-Fuzzy Model for The Prediction of Blood Glucose Level in Type 1 Diabetes Mellitus Patients.

Open Access
|Jul 2019

References

  1. Ahmed, Y. B. and Mahmud, A. E., 2013, A Fuzzy Controller for Blood Glucose-Insulin System. Journal of Signal and Information Processing, 4(2):111-117.10.4236/jsip.2013.42015
  2. American Council of Exercise, 2013, Exercise and Type I Diabetes. Fit Facts, Retrieved March 5, 2015 from http://wellnessproposals.com/fitness/handouts/healthchallenges/exercise_diabetes.pdf.
  3. Bremer, T. and Gough, D. A., 1999, Is Blood Glucose Predictable from Previous Values?. Diabetes, 48(3):445–451.10.2337/diabetes.48.3.44510078542
  4. Charles, D. C., 2002, Pharmacology in Rehabilitation. Pennsylvania: F.A. Davis.
  5. Deutsch, T., Carson, E.R., Harvey, E., Lehmann, E.D., Sonksen, P.H., Tamas, G., Whitney, K. and Williams, C.D., 1990, Computer assisted diabetes management, A complex approach. Computer Methods and Programs in Biomedicine, 32(3-4):195-214.10.1016/0169-2607(90)90102-F
  6. Ghevondian, N., Nguyen, H. T. and Colagiuri, S., 2001, A Novel Fuzzy Neural Network Estimator for Predicting Hypoglycemia in Insulin- Induced Subjects. Proceedings- 23rd Annual Conference - IEEE/EMVS, 1657-1657.
  7. Hidalgo, J. I., Colmenar, J. M., Kronberger, G., Winkler, S. M., Garnica, O., and Lanchares, J., 2017, Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods, Journal of Medical Systems, 41(9):142.10.1007/s10916-017-0788-2
  8. International Diabetes Federation, 2013, IDF Diabetes Atlas – 6th Edition, Brussels Belgium, Retrieved September 2, 2016, from http://www.idf.org/diabetesatlas/data-visualisations.
  9. International Diabetes Federation, 2016, IDF Diabetes Atlas – 7th Edition. Retrieved September 2, 2016, from http://www.idf.org/diabetesatlas.
  10. Juan, Li. and Chandima, F., 2016, Smartphone-based personalized blood glucose prediction, ICT Express, 2(4):150-154.10.1016/j.icte.2016.10.001
  11. Kyriaki, S., Martin, M., Katerina, S., Pavlína, P. and Lenka, L., 2018, Predicting Blood Glucose Levels for a Type I Diabetes Patient by Combination of Autoregressive with One Compartment Open Model, IFMBE proceedings, 771-774.10.1007/978-981-10-5122-7_193
  12. Mathers, C. D. and Loncar, D., 2006, Projections of global mortality and burden of disease from 2002 to 2030, PLoS Medicine, 3(11):e442.10.1371/journal.pmed.0030442
  13. Melissa, C. S., 2012, Diabetes (Type 1 and Type 2). Medicine Net. Retrieved February 3, 2014, from http://www.medicinenet.com/diabetes_mellitus/page4.htm.
  14. Michael, C. R. and Bruce, A. P., 2006. Type 1 Diabetes and Vigorous Exercise: Applications of Exercise Physiology to Patient Management. Canadian Journal of Diabetes, 30(1):63-71.10.1016/S1499-2671(06)01010-0
  15. Moshe, P., Tadej, B., Eran, A.,Olga, K., Natasa, B., Shahar, M.,Torben, B., Magdalena, A., Stefanija, M.D., Ido, M., Revital, N. and Thomas, D., 2013, Artificial Pancreas for Nocturnal Glucose Control. The New England Journal of Medicine N ENGL J MED, 368(9):824 – 833.
  16. Scott, M. P., Marilyn, J. B., Brent, D. C., Raymond, E. B., Jason, D. L., Desmond, S., Antonio, C., and Thomas, J. P., 2010, Development of a neural network model for predicting glucose levels in a surgical critical care setting. Patient Safety in Surgery Journal, 4(15):1-5.10.1186/1754-9493-4-15294419420828400
  17. Shanthi, S., Kumar, D., Varatharaj, S. and Santhana S., 2010, Prediction of Hypo/Hyperglycemia through System Identification, Modelling and Regularization of Ill- Posed Data. International Journal of Computer Science & Emerging Technologies, 1(4):171 – 176.
  18. Shoback, D., 2011, Greenspan's Basic & Clinical Endocrinology. (9th ed.). New York: McGraw-Hill Medical.
  19. Sparacino, G., Zanderigo, F., Corazza, S., Maran, A., Facchinetti, A., and Cobelli, C., 2007, Glucose Concentration can be Predicted Ahead in Time from Continuous Glucose Monitoring Sensor Time-Series. IEEE Trans. Biomed.Eng., 54(5):931–937.10.1109/TBME.2006.88977417518291
  20. Stahl, F., and Johansson, R., 2009, Diabetes Mellitus Modelling and Short term Prediction based on Blood Glucose Measurements. Mathematical Biosciences, 217(2):101-117.10.1016/j.mbs.2008.10.00819022264
  21. World Health Organization, 2011. Global status report on noncommunicable diseases 2010, Geneva, Retrieved September 2, 2016, from https://www.who.int/nmh/publications/ncd_report2010/en/
  22. World Health Organization, 2014, Global Health Estimates: Deaths by Cause, Age, Sex and Country, 2000-2012. Geneva, Retrieved September2,2016, from https://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html
  23. World Health Organization, 2013, World Health Organization. Retrieved March 5, 2014 from http://www.who.int/mediacentre/factsheets/fs312/en/
  24. Zarita, Z., Ong, P. and Cemal, A., 2009. A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients. International Journal of Information and Mathematical Sciences, 5(1):72 - 79.
Language: English
Page range: 1 - 15
Submitted on: Nov 10, 2018
|
Accepted on: Feb 3, 2019
|
Published on: Jul 20, 2019
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 N. O. Orieke, O.S. Asaolu, T. A. Fashanu, O. A. Fasanmade, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.