Have a personal or library account? Click to login
Machine Learning Methods of Remote Sensing Data Processing for Mapping Salt Pan Crust Dynamics in Sebkha de Ndrhamcha, Mauritania Cover

Machine Learning Methods of Remote Sensing Data Processing for Mapping Salt Pan Crust Dynamics in Sebkha de Ndrhamcha, Mauritania

Open Access
|Jun 2025

Figures & Tables

Figure 1.

Topographic map of Mauritania showing the extent of the study area of the Sebkha de Ndrhamcha salt pan (rotated yellow square). Data: General Bathymetric Chart of the Oceans (GEBCO)/Shuttle Radar Topography Mission (SRTM). Software: Generic Mapping Tools (GMT).
Map source: author.
Topographic map of Mauritania showing the extent of the study area of the Sebkha de Ndrhamcha salt pan (rotated yellow square). Data: General Bathymetric Chart of the Oceans (GEBCO)/Shuttle Radar Topography Mission (SRTM). Software: Generic Mapping Tools (GMT). Map source: author.

Figure 2.

Surficial geology and lithologic units of Mauritania. Data: USGS, GEBCO. Software: QGIS. Map source: author.
Surficial geology and lithologic units of Mauritania. Data: USGS, GEBCO. Software: QGIS. Map source: author.

Figure 3.

Geological provinces around Mauritania. Data: USGS, GEBCO. Software: QGIS. Map source: author.
Geological provinces around Mauritania. Data: USGS, GEBCO. Software: QGIS. Map source: author.

Figure 4.

Land cover types in Mauritania. Data: FAO, OpenStreetMaps. Software: QGIS. Map source: author.
Land cover types in Mauritania. Data: FAO, OpenStreetMaps. Software: QGIS. Map source: author.

Figure 5.

Landsat 8-9 satellite images covering salt pan Sebkha de Ndrhamcha in western Mauritania in natural colours showing floodplain for 6 years (always April): (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Brief explanations of the colours: black colour indicates water areas of the Atlantic ocean, light beige colour represents sandy areas, brown colour indicates desert and bare lands, dark brown colour shows wet areas, grey colour indicates artificial surfaces (roads and urban areas) and cyan colour indicates salt pans on the original images. The colours are in Red Green Blue (RGB). Data source: US Geological Survey (USGS), downloaded from the EarthExplorer repository.
Landsat 8-9 satellite images covering salt pan Sebkha de Ndrhamcha in western Mauritania in natural colours showing floodplain for 6 years (always April): (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Brief explanations of the colours: black colour indicates water areas of the Atlantic ocean, light beige colour represents sandy areas, brown colour indicates desert and bare lands, dark brown colour shows wet areas, grey colour indicates artificial surfaces (roads and urban areas) and cyan colour indicates salt pans on the original images. The colours are in Red Green Blue (RGB). Data source: US Geological Survey (USGS), downloaded from the EarthExplorer repository.

Figure 6.

Classified Landsat 8-9 OLI/TIRS images using clustering: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.
Classified Landsat 8-9 OLI/TIRS images using clustering: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 7.

Maps of rejection threshold probability for accuracy analysis of image classification by chi-squared test: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.
Maps of rejection threshold probability for accuracy analysis of image classification by chi-squared test: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 8.

Random Forest Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023.
Software: GRASS GIS. Source of maps: author.
Random Forest Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 9.

Decision Tree Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023.
Software: GRASS GIS. Source of maps: author.
Decision Tree Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 10.

Gradient Boosting Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.
Gradient Boosting Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Figure 11.

Support Vector Machine (SVM) Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.
Support Vector Machine (SVM) Classifier of Machine Learning (ML) classification methods applied for processing of satellite images: (a) 2014, (b) 2017, (c) 2018, (d) 2020, (e) 2022, (f) 2023. Software: GRASS GIS. Source of maps: author.

Accuracy assessment for ML models in GRASS GIS: 1) Random Forest (RF); 2) Support Vector Machine (SVM); 3) Decision Tree Classifier (DTC); 4) Gradient Boosting Classifier (GBC)_ Estimated classes of land cover types for 2014–2023 in West Mauritania_

YearProducer’s accuracy, %User’s accuracy, %Kappa statistics
RFSVMDTCGBCRFSVMDTCGBCRFSVMDTCGBC
Land Cover Class 1: Water bodies
201477837471788862620.800.740.650.65
201778847270778565670.810.930.530.59
201876797569717966681.000.900.690.61
202081817372898968720.930.950.580.61
202282806573827375740.950.700.841.00
202379826668777474700.740.790.830.67
Land Cover Class 2: Shelf and coastal plains
2014897872671009856760.820.910.670.69
201795916872926564650.731.000.560.74
2018100928791877763680.780.940.880.68
2020881008665898769620.890.840.830.85
2022100959659787758590.910.780.720.73
202384837571737574720.920.750.750.56
Land Cover Class 3: Sebkha
201495786774929066670.880.740.680.72
201785938872788769810.780.810.550.56
201888896364779471690.910.880.710.54
202094756469938572651.000.640.750.78
202273926481739559710.841.000.730.78
202369687683678973720.910.900.740.84
Land Cover Class 4: Urban areas
201487786468888667661.000.850.760.81
201794796964927561720.951.000.820.73
201874917472917972740.850.870.750.80
202069806576846468681.000.790.810.69
202271668381746254650.921.000.650.75
202383657283797559710.870.720.690.73
Land Cover Class 5: Sahelian grassland
201487816567829083810.930.740.950.91
201764657168767974780.780.680.760.58
201878727357799168631.000.830.730.79
202074797271677764680.910.650.880.63
202288827182818072690.531.000.540.77
202391756564918271901.000.910.670.82
Land Cover Class 6: Salty sands
201488726763917968670.980.730.730.78
201772797276827465781.000.750.810.75
201891906478907871811.000.810.760.69
202089856974858178820.810.860.880.65
202290845671789064890.840.910.720.67
202377716880747273750.781.000.630.68
Land Cover Class 7: Compact soil
201489786763898169630.880.730.650.61
201773776369737273711.000.610.690.83
201878697265858574700.850.680.810.95
202088817971697465650.970.740.850.74
202291908075707869690.831.000.720.61
202374757161666481740.740.920.780.89
Land Cover Class 8: Stony desert and yellow dunes
201485837567897368740.840.810.710.86
201778887869938469820.751.000.820.92
201889817478788689761.000.630.700.84
202092799171957281810.720.790.620.70
202291847374818990890.680.710.590.69
202384757573739083730.660.650.600.76
Land Cover Class 9: Sandy desert and white dunes
201492816765818265710.770.820.770.71
201783897281847878780.810.730.810.55
201893706872957371730.640.670.801.00
202078938068888983671.000.540.680.75
202277947173897169810.980.910.720.67
202374858179736962660.901.000.740.79
Land Cover Class 10: Bare soil and rocks
201491836878848378740.871.000.730.69
201789826372837873750.810.740.770.57
201888756577796969811.000.730.810.61
202079697364747174670.740.690.800.74
202282917969757381830.630.811.000.83
202377807571829583740.840.680.650.80

Metadata of the multispectral satellite images Landsat 8-9 OLI/TIRS, used in this study, obtained from USGS1

DateSpacecraft / IDPath/rowEntity product IDScene IDCloud/Coverage
27/04/2014Landsat 8205/47LC08_L2SP_205047_20140427_20200911_02_T1LC82050472014117LGN010.00
03/04/2017Landsat 8205/47LC08_L2SP_205047_20170403_20200904_02_T1LC82050472017093LGN000.04
22/04/2018Landsat 8205/47LC08_L2SP_205047_20180422_20201015_02_T1LC82050472018112LGN000.04
11/04/2020Landsat 8205/47LC08_L2SP_205047_20200411_20200822_02_T1LC82050472020102LGN000.17
09/04/2022Landsat 8205/47LC09_L1TP_205047_20220409_20230422_02_T1LC92050472022099LGN010.00
28/04/2023Landsat 9205/47LC09_L2SP_205047_20230428_20230430_02_T1LC92050472023118LGN000.01

Processing time of the satellite images Landsat-8 OLI/TIRS showing the effectiveness of ML methods executed by GRASS GIS

MethodProcessing time
Clustering<1 min
Min-max discriminant analysisca. 25 sec
Random Forest Classifier9 min
Decision Tree Classifierca. 34 sec
Gradient Boosting Classifier23 min
Support Vector Machine Classifier47 min

Estimated classes of land cover types in western Mauritania, Sebkha de Ndrhamcha, for April_ Map units in measurements: 30 m resolution for each pixel on the multispectral scene of Landsat 8-9 OLI/TIRS_

YearClasses of land cover types in western Mauritania, Sebkha de Ndrhamcha
12345678910
2014141043079202708123915811493178
201713864370141215668105617421548144
201813842178110182598119519751353117
202013952281452285828812502123120
202214432201161975329702567114640
202314683153136253538115316221577206
DOI: https://doi.org/10.2478/arsa-2025-0003 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 37 - 69
Submitted on: Apr 6, 2024
|
Accepted on: Apr 8, 2025
|
Published on: Jun 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Polina LEMENKOVA, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.